1 / 12
文档名称:

Difference Equations to Differential Equations (54).pdf

格式:pdf   页数:12
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

Difference Equations to Differential Equations (54).pdf

上传人:一文千金 2011/12/26 文件大小:0 KB

下载得到文件列表

Difference Equations to Differential Equations (54).pdf

文档介绍

文档介绍:¢¡£¡¥¤§¦¨¤§©
¤
  £©  Section

 ¢¡£¡¥¤§¦¨¤§©  £
 £© Power Series Solutions
In this section we consider one more approach to finding solutions, or approximate so-
lutions, to differential equations. Although the method may be applied to first order
equations, our discussion will center on second order equations.
The idea is simple: Assuming that the equation
x¨ = f(x, x,˙ t) ()
has a solution which is analytic on an interval about t = t0, we express x as a power series

x(t) = a (t − t )n, ()
X n 0
n=0
computex ˙ andx ¨, substitute the results into the equation, solve for the coefficients a0, a1,
a2, . . . , and verify that the resulting series converges on an interval about t0. As we shall
see, in practice the difficult part is solving for the coefficients. This method will lead us to a
closed form solution for the equation only in the rare case that we are able to recognize the
resulting power series as the Taylor series of some known function. One advantage of this
technique over numerical methods, such as the Runge-Kutta method, is that we are able
to work with general solutions and equations involving unspecified parameters, whereas
with a numerical method every quantity must be specified as a number. The disadvantage
of this technique is that it is not as widely applicable, due to the difficulty of solving for
the coefficients, and, when numerical results are needed, one must still approximate the
infinite series which results when evaluating x at a point.
To illustrate the procedure, we will begin with an example which we know to be solvable
by the techniques of Section .
Example Consider the equation
x¨ = −x. ()
This is a constant coefficient homogeneous linear equation with characteristic equation
k2 + 1 = 0. Since the roots of the characteristic equation are −i and i, we know from our
work in Section that the general solution of this equation is
x = c1 cos

最近更新

2024年浙江万里学院单招职业适应性考试题库完.. 40页

2024年浙江工业大学之江学院单招职业适应性考.. 39页

2024年浙江广厦建设职业技术大学单招职业适应.. 41页

2024年浙江省温州市单招职业倾向性考试模拟测.. 40页

2024年浙江长征职业技术学院单招职业适应性测.. 38页

2024年海南经贸职业技术学院单招职业适应性测.. 39页

2024年温州职业技术学院单招职业技能测试模拟.. 39页

2024年湖北国土资源职业学院单招职业技能测试.. 39页

2024年湖北生态工程职业技术学院单招职业技能.. 40页

2024年湖北省荆州市单招职业适应性考试题库汇.. 41页

2024年湖北轻工职业技术学院单招综合素质考试.. 39页

2024年湖南体育职业学院单招职业技能测试模拟.. 40页

2024年湖南商务职业技术学院单招职业适应性考.. 40页

2024年湖南工业职业技术学院单招职业倾向性测.. 39页

2024年湖南理工职业技术学院单招职业适应性考.. 39页

2024年湖南科技职业学院单招职业倾向性测试题.. 41页

2024年湖南都市职业学院单招职业倾向性考试题.. 40页

2024年滁州城市职业学院单招职业倾向性考试题.. 39页

2024年漳州卫生职业学院单招职业倾向性考试模.. 41页

2024年潍坊工商职业学院单招职业技能测试模拟.. 40页

2024年潞安职业技术学院单招职业适应性测试题.. 41页

2024年焦作师范高等专科学校单招职业倾向性测.. 40页

2024年琼台师范学院单招综合素质考试题库推荐.. 42页

2024年甘肃建筑职业技术学院单招职业技能测试.. 40页

2024年甘肃省金昌市单招职业适应性考试题库最.. 39页

2024年白城职业技术学院单招职业倾向性考试题.. 40页

2024年益阳医学高等专科学校单招职业倾向性测.. 39页

美团代运营业务委托合同 6页

新概念青少版2A各单元重点归纳 15页

足球竞彩项目招股说明书 7页