1 / 34
文档名称:

Introduction to Tensor Calculus and Continuum Mechanics (1).pdf

格式:pdf   页数:34
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

Introduction to Tensor Calculus and Continuum Mechanics (1).pdf

上传人:一文千金 2011/12/27 文件大小:0 KB

下载得到文件列表

Introduction to Tensor Calculus and Continuum Mechanics (1).pdf

文档介绍

文档介绍:1
PART 1: INTRODUCTION TO TENSOR CALCULUS
A scalar field describes a one-to-one correspondence between a single scalar number and a point. An n-
dimensional vector field is described by a one-to-one correspondence between n-numbers and a point. Let us
generalize these concepts by assigning n-squared numbers to a single point or n-cubed numbers to a single
point. When these numbers obey certain transformation laws they e examples of tensor fields. In
general, scalar fields are referred to as tensor fields of rank or order zero whereas vector fields are called
tensor fields of rank or order one.
Closely associated with tensor calculus is the indicial or index notation. In section 1 the indicial
notation is defined and illustrated. We also define and investigate scalar, vector and tensor fields when they
are subjected to various coordinate transformations. It turns out that tensors have certain properties which
are independent of the coordinate system used to describe the tensor. Because of these useful properties,
we can use tensors to represent various fundamental laws occurring in physics, engineering, science and
mathematics. These representations are extremely useful as they are independent of the coordinate systems
considered.
§ INDEX NOTATION
Two vectors A~ and B~ can be expressed in ponent form
A~ = A1 be1 + A2 be2 + A3 be3 and B~ = B1 be1 + B2 be2 + B3 be3,
where be1, be2 and be3 are orthogonal unit basis vectors. Often when no confusion arises, the vectors A~ and
B~ are expressed for brevity sake as number triples. For example, we can write
A~ =(A1,A2,A3)andB~ =(B1,B2,B3)
where it is understood that only ponents of the vectors A~ and B~ are given. The unit vectors would
be represented
be1 =(1, 0, 0), be2 =(0, 1, 0), be3 =(0, 0, 1).
A still shorter notation, depicting the vectors A~ and B~ is the index or indicial notation. In the index notation,
the quantities
Ai,i=1, 2, 3andBp,p=1, 2, 3
represent ponents of the vectors A~ and B.~

最近更新

2024年汕尾职业技术学院单招职业技能测试模拟.. 40页

2024年江海职业技术学院单招综合素质考试模拟.. 40页

2024年江苏工程职业技术学院单招综合素质考试.. 40页

2024年江西信息应用职业技术学院单招职业技能.. 39页

2024年江西司法警官职业学院单招职业倾向性考.. 39页

2024年江西工业职业技术学院单招综合素质考试.. 39页

2024年江西建设职业技术学院单招职业倾向性考.. 39页

2024年江西枫林涉外经贸职业学院单招综合素质.. 40页

2024年江西青年职业学院单招职业适应性测试题.. 40页

2024年池州职业技术学院单招职业倾向性考试题.. 41页

2024年沧州医学高等专科学校单招职业倾向性测.. 41页

2024年沧州航空职业学院单招职业适应性测试题.. 39页

2024年河北化工医药职业技术学院单招职业倾向.. 38页

2024年河北正定师范高等专科学校单招职业技能.. 40页

2024年河北省沧州市单招职业适应性测试题库及.. 40页

2024年河北石油职业技术大学单招职业技能测试.. 42页

2024年河北能源职业技术学院单招综合素质考试.. 39页

2024年河南信息统计职业学院单招职业技能测试.. 39页

2024年河南地矿职业学院单招职业适应性测试模.. 41页

2024年河南工业和信息化职业学院单招职业技能.. 40页

2026年黄冈职业技术学院单招职业倾向性考试模.. 40页

2024年河南物流职业学院单招职业技能测试题库.. 39页

2025年广州卫生职业技术学院单招职业技能测试.. 64页

美团代运营业务委托合同 6页

新概念青少版2A各单元重点归纳 15页

九年级家长会课件PPT下载(初三2班) 25页

年产3000万片硝苯地平缓释片车间设计 40页

DB61∕T 926-2014 火灾高危单位消防安全管理与.. 45页

AQ 7011-2018《高温熔融金属吊运安全规程》 11页

保洁外包单位月度考评表 3页