1 / 16
文档名称:

Introduction to Tensor Calculus and Continuum Mechanics (6).pdf

格式:pdf   页数:16
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

Introduction to Tensor Calculus and Continuum Mechanics (6).pdf

上传人:一文千金 2011/12/27 文件大小:0 KB

下载得到文件列表

Introduction to Tensor Calculus and Continuum Mechanics (6).pdf

文档介绍

文档介绍:171
PART 2: INTRODUCTION TO CONTINUUM MECHANICS
In the following sections we develop some applications of tensor calculus in the areas of dynamics,
elasticity, fluids and electricity and ism. We begin by first developing generalized expressions for the
vector operations of gradient, divergence, and curl. Also generalized expressions for other vector operators
are considered in order that tensor equations can be converted to vector equations. We construct a table to
aid in the translating of generalized tensor equations to vector form and vice versa.
The basic equations of continuum mechanics are developed in the later sections. These equations are
developed in both Cartesian and generalized tensor form and then converted to vector form.
§ TENSOR NOTATION FOR SCALAR AND VECTOR QUANTITIES
We consider the tensor representation of some vector expressions. Our goal is to develop the ability to
convert vector equations to tensor form as well as being able to represent tensor equations in vector form.
In this section the basic equations of continuum mechanics are represented using both a vector notation and
the indicial notation which focuses attention on the ponents. In order to move back and forth
between these notations, the representation of vector quantities in tensor form is now considered.
Gradient
For Φ= Φ(x1,x2,...,xN ) a scalar function of the coordinates xi,i =1,...,N , the gradient of Φ is
defined as the covariant vector
∂Φ
Φ,i = ,i=1,...,N. ()
∂xi
The contravariant form of the gradient is
im
g Φ,m. ()
i im
Note, if C = g Φ,m,i=1, 2, 3 are the ponents of the gradient then in an orthogonal coordinate
system we will have
1 11 2 22 3 33
C = g Φ,1,C= g Φ,2,C= g Φ,3.
ii 2
We note that in an orthogonal coordinate system that g =1/hi ,(nosumoni),i =1, 2, 3 and hence
replacing the ponents by their equivalent ponents there results the equations
C(1) 1 ∂Φ C(2) 1 ∂Φ C(3) 1 ∂Φ
= 2 1 , = 2 2 , = 2 3 .
h1 h1 ∂x h2

最近更新

2024年白银希望职业技术学院单招综合素质考试.. 40页

2024年益阳医学高等专科学校单招职业适应性测.. 40页

2024年眉山职业技术学院单招职业适应性测试模.. 40页

2024年石家庄工程职业学院单招职业技能测试模.. 41页

2024年福州职业技术学院单招职业技能测试模拟.. 39页

2024年福建信息职业技术学院单招职业适应性测.. 42页

2024年福建生物工程职业技术学院单招职业倾向.. 40页

2024年福建省福州市单招职业适应性测试模拟测.. 40页

2024年秦皇岛职业技术学院单招职业倾向性测试.. 40页

2024年绵阳飞行职业学院单招职业倾向性考试模.. 40页

2024年苏州信息职业技术学院单招职业技能测试.. 39页

2024年苏州工业职业技术学院单招职业技能测试.. 41页

2024年苏州高博软件技术职业学院单招职业技能.. 41页

2024年菏泽医学专科学校单招职业适应性测试题.. 40页

2024年蚌埠经济技术职业学院单招职业适应性考.. 41页

2024年西安电力机械制造公司机电学院单招职业.. 40页

2024年赣州职业技术学院单招职业适应性测试题.. 40页

2024年辽宁医药职业学院单招职业适应性测试题.. 40页

2024年辽宁建筑职业学院单招职业技能测试题库.. 40页

2024年辽宁生态工程职业学院单招职业倾向性测.. 40页

2024年辽宁省营口市单招职业倾向性测试题库完.. 39页

2024年辽宁经济职业技术学院单招职业适应性考.. 40页

2024年连云港师范高等专科学校单招综合素质考.. 40页

2024年遂宁职业学院单招职业适应性考试模拟测.. 41页

2025年广州卫生职业技术学院单招职业技能测试.. 64页

美团代运营业务委托合同 6页

新概念青少版2A各单元重点归纳 15页

九年级家长会课件PPT下载(初三2班) 25页

年产3000万片硝苯地平缓释片车间设计 40页

DB61∕T 926-2014 火灾高危单位消防安全管理与.. 45页