1 / 25
文档名称:

Introduction to Tensor Calculus and Continuum Mechanics (7).pdf

格式:pdf   页数:25
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

Introduction to Tensor Calculus and Continuum Mechanics (7).pdf

上传人:一文千金 2011/12/27 文件大小:0 KB

下载得到文件列表

Introduction to Tensor Calculus and Continuum Mechanics (7).pdf

文档介绍

文档介绍:187
§ DYNAMICS
Dynamics is concerned with studying the motion of particles and rigid bodies. By studying the motion
of a single hypothetical particle, one can discern the motion of a system of particles. This in turn leads to
the study of the motion of individual points in a continuous deformable medium.
Particle Movement
The trajectory of a particle in a generalized coordinate system is described by the parametric equations
xi = xi(t),i=1,...,N ()
where t is a time parameter. If the coordinates are changed to a barred system by introducing a coordinate
transformation
xi = xi(x1,x2,...,xN ),i=1,...,N
then the trajectory of the particle in the barred system of coordinates is
xi = xi(x1(t),x2(t),...,xN (t)),i=1,...,N. ()
The generalized velocity of the particle in the unbarred system is defined by
dxi
vi = ,i=1,...,N. ()
dt
By the chain rule differentiation of the transformation equations () one can verify that the velocity in
the barred system is
dxr ∂xr dxj ∂xr
vr = = = vj,r=1,...,N. ()
dt ∂xj dt ∂xj
Consequently, the generalized velocity vi is a first order contravariant tensor. The speed of the particle is
obtained from the magnitude of the velocity and is
2 i j
v = gij v v .
The generalized acceleration f i of the particle is defined as the intrinsic derivative of the generalized velocity.
The generalized acceleration has the form
   
i n i 2 i m n
i δv i dx dv i m n d x i dx dx
f = = v,n = + v v = + ()
δt dt dt mn dt2 mn dt dt
and the magnitude of the acceleration is
2 i j
f = gij f f .
188
Figure -1 Tangent, normal and binormal to point P on curve.
-Serret Formulas
The parametric equations () describe a curve in our generalized space. With reference to the figure
-1 we wish to define at each point P of the curve the following orthogonal unit vectors:
T i = unit tangent vector at each point P.
N i = unit normal vector at each point P.
Bi = unit binorm

最近更新

2024年新乡职业技术学院单招职业倾向性考试模.. 40页

2024年新疆克孜勒苏柯尔克孜自治州单招职业倾.. 39页

2024年无锡工艺职业技术学院单招职业技能考试.. 41页

2024年昆山登云科技职业学院单招职业适应性测.. 41页

2024年昭通卫生职业学院单招职业倾向性测试模.. 40页

2024年景德镇艺术职业大学单招职业倾向性测试.. 38页

2024年曹妃甸职业技术学院单招职业倾向性测试.. 41页

2024年朝阳师范高等专科学校单招职业倾向性考.. 42页

2024年杭州科技职业技术学院单招职业技能测试.. 40页

2024年枣庄科技职业学院单招职业技能考试模拟.. 40页

2024年柳州铁道职业技术学院单招职业适应性考.. 40页

2024年武夷山职业学院单招职业倾向性测试模拟.. 41页

2024年武汉民政职业学院单招职业倾向性考试题.. 42页

2024年永州师范高等专科学校单招职业技能测试.. 41页

2024年汕尾职业技术学院单招职业适应性测试模.. 41页

2024年江海职业技术学院单招职业适应性测试模.. 42页

2024年江苏医药职业学院单招职业适应性考试模.. 40页

2024年江苏省泰州市单招职业倾向性考试题库附.. 40页

2024年江苏食品药品职业技术学院单招综合素质.. 39页

2024年江西工业贸易职业技术学院单招职业适应.. 41页

2024年江西应用技术职业学院单招职业适应性考.. 41页

2024年江西机电职业技术学院单招综合素质考试.. 41页

2024年江西泰豪动漫职业学院单招职业适应性考.. 40页

2024年江西省抚州市单招职业适应性测试题库最.. 40页

2024年江西科技学院单招职业适应性考试题库最.. 40页

2025年广州卫生职业技术学院单招职业技能测试.. 64页

美团代运营业务委托合同 6页

新概念青少版2A各单元重点归纳 15页

九年级家长会课件PPT下载(初三2班) 25页

年产3000万片硝苯地平缓释片车间设计 40页