1 / 17
文档名称:

简单的线性规划-线性规划的实际应用.ppt

格式:ppt   大小:282KB   页数:17页
下载后只包含 1 个 PPT 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

简单的线性规划-线性规划的实际应用.ppt

上传人:知识优选 2021/11/28 文件大小:282 KB

下载得到文件列表

简单的线性规划-线性规划的实际应用.ppt

相关文档

文档介绍

文档介绍:简单的线性规划
线性规划的实际应用
复习线性规划
问题:
设z=2x+y,式中变量满足
下列条件:
求z的最大值与最小值。
目标函数
(线性目标函数)
线性约
束条件
线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
可行解 :满足线性约束条件的解(x,y)叫可行解;
可行域 :由所有可行解组成的集合叫做可行域;
最优解 :使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。
可行域
2x+y=3
2x+y=12
(1,1)
(5,2)
复习线性规划
解线性规划问题的一般步骤:
第一步:在平面直角坐标系中作出可行域;
第二步:在可行域内找到最优解所对应的点;
第三步:解方程的最优解,从而求出目标函数的最大值或最小值。
探索结论
复习线性规划
线性规划的实际应用
例1 某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、、乙两种棉纱应各生产多少(精确到吨),能使利润
总额最大?
纺纱厂的效益问题
解线性规划应用问题的一般步骤:
1、理清题意,列出表格;
2、设好变元,列出线性约束条件(不 等式组)与目标函数;
3、准确作图;
4、根据题设精度计算。
线性规划的实际应用
例1 某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、、乙两种棉纱应各生产多少(精确到吨),能使利润总额最大?
纺纱厂的效益问题
线性规划的实际应用
解:设生产甲、乙两种棉纱分别为x吨、y吨,利润总额为z元,则
Z=600x+900y
作出可行域,可知直线Z=600x+900y通过点M时利润最大。
解方程组
得点M的坐标
x=350/3≈117
y=200/3≈67
答:应生产甲、乙两种棉纱分别为117吨、67吨,能使利润总额达到最大。
线性规划的实际应用
例2 已知甲、乙两煤矿每年的产量分别为200万吨和300万吨,,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/,/,能使总运费最少?
煤矿调运方案问题
线性规划的实际应用