1 / 23
文档名称:

高中数学必修四知识点..大全.doc

格式:doc   大小:2,007KB   页数:23页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

高中数学必修四知识点..大全.doc

上传人:ocxuty74 2021/12/1 文件大小:1.96 MB

下载得到文件列表

高中数学必修四知识点..大全.doc

相关文档

文档介绍

文档介绍:精品文档,仅供学习与交流,如有侵权请联系网站删除
【精品文档】第 1 页
知识点串讲
必修四
精品文档,仅供学习与交流,如有侵权请联系网站删除
【精品文档】第 2 页
第一章:三角函数
.1 任意角
1、角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
始边
终边
顶点
A
O
B
②角的名称:
③角的分类:
零角:射线没有任何旋转形成的角
正角:按逆时针方向旋转形成的角
负角:按顺时针方向旋转形成的角

2、象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.
终边相同的角的表示:
所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α + k·360 ° ,
k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.
注意:
⑴ k∈Z ⑵ α是任一角;
⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差
360°的整数倍;
⑷ 角α + k·720 °与角α终边相同,但不能表示与角α终边相同的所有角.
3、写出终边在y轴上的角的集合(用0°到360°的角表示) .
解:{α | α = 90°+ n·180°,n∈Z}.
4、已知α角是第三象限角,则2α,各是第几象限角?
解:角属于第三象限, k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)
即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)
故2α是第一、二象限或终边在y轴的非负半轴上的角.
又k·180°+90°<<k·180°+135°(k∈Z) .
当k为偶数时,令k=2n(n∈Z),则n·360°+90°<<n·360°+135°(n∈Z) ,
当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<<n·360°+315°(n∈Z) ,
因此属于第二或第四象限角.
精品文档,仅供学习与交流,如有侵权请联系网站删除
【精品文档】第 3 页

1、弧度制
我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.
2、弧度制的性质:
①半圆所对的圆心角为 ②整圆所对的圆心角为
③正角的弧度数是一个正数. ④负角的弧度数是一个负数.
⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=
3、弧长公式
弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.
证法一:∵圆的面积为,∴圆心角为1rad的扇形面积为,又扇形弧长为l,半径为R,
∴扇形的圆心角大小为rad, ∴扇形面积.
证法二:设圆心角的度数为n,则在角度制下的扇形面积公式为,又此时弧长,∴.
可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.

1、三角函数定义
在直角坐标系中,设α是一个任意角,α终边上任意一点(除了原点)的坐标为,它与原点的距离为,那么
(1)比值叫做α的正弦,记作,即;
(2)比值叫做α的余弦,记作,即;
(3)比值叫做α的正切,记作,即;
(4)比值叫做α的余切,记作,即;
2.三角函数的定义域、值域
精品文档,仅供学习与交流,如有侵权请联系网站删除
【精品文档】第 4 页
函 数
定 义 域
值 域
3、求函数的值域
解: 定义域:cosx¹0 ∴x的终边不在x轴上 又∵tanx¹0 ∴x的终边不在y轴上
∴当x是第Ⅰ象限角时, cosx=|cosx| tanx=|tanx| ∴y=2
…………Ⅱ…………, |cosx|=-cosx |tanx|=-tanx ∴y=-2
…………ⅢⅣ………, |cosx|=-cosx |tanx|=tanx ∴y=0
4、诱导公式
5、三角函数线的定义:
设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与点,
过作轴的垂线,垂足为;过点作单位圆的切线,它与角