文档介绍:项目名称:
基于光场量子态的量子信息研究
首席科学家:
王海山西大学
起止年限:
2010年1月-2014年8月
依托部门:
山西省科技厅
一、研究内容
项目将围绕重大科学研究计划“量子调控”专项中的“基于光场量子态的量子信息研究”的指南内容,瞄准利用光场量子态进行量子信息处理中的关键科学和技术问题,如:稳定可靠的纠缠光源的获得,有效的纠缠光纯化以及光与原子量子接口的实现等开展深入的研究。从实验上构建稳定可靠、可扩展、易操控的量子信息处理物理系统,以及在原理探讨中加强核心技术的获得。
本项目拟解决的关键科学问题包括:
1. 具有实用价值的纠缠态光源的研制:需解决以下关键问题:(1) 连续单频激光光源、窄线宽连续可调谐钛宝石激光器;(2)降低作为泵浦源的激光器的位相噪声使之达到散粒噪声极限,最大限度克服其对量子纠缠态光场纠缠度的影响;(3)改善反馈控制系统以降低光束间相对位相波动,提高非线性晶体的控温精度,以获得高纠缠度连续变量量子纠缠态光场;(4)当非简并光学参量振荡器运转于阈值以上时,研究解决两个下转换模在光学参量振荡腔内的不平衡损耗;(5)优化基于光纤的纠缠光源的参数,提高纠缠度,并使该系统全光纤化。
2. 多色多组份纠缠态光场产生及量子态传输:需解决以下关键问题:(1)将作为泵浦源的光纤激光器输出噪声降低到散粒噪声极限水平;(2)寻找合适的控制参数,实现量子离物传态以及可控的量子克隆;(3)多色多组份纠缠态在传输和与节点发生相互作用过程中的消相干问题。
3. 量子纠缠纯化和量子接口:需解决以下关键问题:(1)制备非高斯混合纠缠态光场;(2)获得高光学厚度、极低温度的冷原子系综;(3)减小原子退相干效应对量子存储的影响;(4)设计可行的探测系统, 消除杂散光的影响,完成光场量子态信号的探测。
4. 单量子比特(光子或分子)的产生与探测及其在量子信息处理上的应用:需解决以下关键问题:(1) 利用低温超导技术实现微波段光场量子态的制备和表征;(2)实现光通信波段(,)和原子吸收线(即波长为780nm,850nm)的快响应时间、高量子效率和低暗计数率的超导单光子测量。
主要研究内容:(1)研制具有实用价值的纠缠态光源。(2)基于多色多组份纠缠态光场的量子信息网络。(3)实现连续变量纠缠纯化,通过光与原子介质(冷原子或
EIT 介质)相互作用实现量子接口。(4)超导量子电子学在连续变量量子信息处理中应用的研究。
具体内容包括:
1、研制具有实用价值的纠缠态光源:
(1);(2)利用自制的高功率全固态连续单频绿光激光器泵浦掺钛蓝宝石激光晶体,研制输出波长在780nm和850nm附近可连续调谐的窄线宽钛宝石激光器;(3)研究上述连续单频激光光源的频率、空间模式和噪声特性,实验探索在改善激光器的运转特性的基础上把泵浦激光的位相噪声降低至散粒噪声极限;(4)利用上述高质量激光作为泵浦源、、、780nm及850nm的连续变量量子纠缠态光源;(5)系统研究光学参量振荡腔内的各种损耗、光束之间相对相位的波动及注入信号光和泵浦光功率对压缩态光场压缩度和纠缠态光场纠缠度的影响,在实验上优化实验参数、讨论技术细节并解决可能存在的问题以提高纠缠态光场的纠缠度;(6)研制高功率全固态连续单频526nm激光器,利用运转于阈值以上的非简并光学参量振荡器产生光通信()和原子吸收波段(795nm)的“双色”连续变量纠缠态;(7)优化谐振腔结构和实验光路,研究实验装置整体化设计的过程中可能存在的技术问题,实现实验系统的整体化;(8)利用不同的光纤,通过不同的位相匹配方式,、 ;(9);(10)研究光纤中的各种非线性效应,以及产生和影响纠缠保真度和光场压缩度的物理机制,,实现系统的全光纤化,研制出易于操作的全光纤纠缠光源样机。
:
(1)拟采用全光纤单频激光系统或全固态激光器作为光学参量过程泵浦光源,采用光学滤波、反馈技术降低激光器输出噪声,获得散粒噪声极限的泵浦激光源;(2)研究光学级联非线性过程中的量子关联问题,实验产生连续变量双色三组份纠缠光源;(3)利用多色多组份纠缠光源开展量子克隆、量子离物传态实验研究,为实现量子网络通信奠定基础。(4)探索多色多组份量子纠缠态与原子系统作用过程