文档介绍:导数与不等式
LT
训练目标
(1)利用导数处理与不等式有关的题型;(2)解题步骤的规范训练.
训练题型
(1)利用导数证明不等式;(2)利用导数解决不等式恒成立问题及存在性问题;
(3)利用导数证明与数列有关的不等式.
解题策略
(1)构造与所证不等式相关的函数;(2)利用导数求出函数的单调性或者最值再证明不等式;(3)处理恒成立问题注意参变量分离.
(x)=x2-ax-alnx(a∈R).
(1)若函数f(x)在x=1处取得极值,求a的值;
(2)在(1)的条件下,求证:f(x)≥-+-4x+.
2.(2016·烟台模拟)已知函数f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x).
(1)若函数y=h(x)的单调减区间是,求实数a的值;
(2)若f(x)≥g(x)对于定义域内的任意x恒成立,求实数a的取值范围.
3.(2016·山西四校联考)已知f(x)=lnx-x+a+1.
(1)若存在x∈(0,+∞),使得f(x)≥0成立,求a的取值范围;
答案精析
1.(1)解 f′(x)=2x-a-,由题意可得f′(1)=0,解得a=,a=1时f(x)在x=1处取得极值,所以a=1.
(2)证明 由(1)知,f(x)=x2-x-lnx,
令g(x)=f(x)-
=-+3x-lnx-,
由g′(x)=x2-3x+3-=-3(x-1)=(x>0),可知g(x)在(0,1)上是减函数,
在(1,+∞)上是增函数,所以g(x)≥g(1)=0,所以f(x)≥-+-4x+成立.
2.解 (1)由题意可知,h(x)=x2-ax+lnx(x>0),
由h′(x)=(x>0),
若h(x)的单调减区间是,
由h′(1)=h′=0,解得a=3,
而当a=3时,h′(x)==(x>0).
由h′(x)<0,解得x∈,
即h(x)的单调减区间是,
∴a=3.
(2)由题意知x2-ax≥lnx(x>0),
∴a≤x-(x>0).
令φ(x)=x-(x>0),
则φ′(x)=,
∵y=x2+lnx-1在(0,+∞)上是增函数,且x=1时,y=0.
∴当x∈(0,1)时,φ′(x)<0;
当x∈(1,+∞)时,φ′(x)>0,
即φ(x)在(0,1)上是减函数,在(1,+∞)上是增函数,
∴φ(x)min=φ(1)=1,故a≤1.
即实数a的取值范围为(-∞,1].
3.(1)解 原题即为存在x>0,
使得lnx-x+a+1≥0,
∴a≥-lnx+x-1,
令g(x)=-lnx+x-1,
则g′(x)=-+1=.
令g′(x)=0,解得x=1.
∵当0<x<1时,g′(x)<0,g(x)为减函数,
当x>1时,g′(x)>0,g(x)为增函数,
∴g(x)min=g(1)=0,a≥g(1)=0.
故a的取值范围是[0,+∞).
(2)证明 原不等式可化为x2+ax-xlnx-a->0(x>1,a≥0).
令G(x)=x2+ax-xlnx-a-,则G(1)=0.
由(1)可知x-lnx-1>0,
则G′(x)=x+a-lnx-1≥x-lnx-1>0,
∴G(x)在(1,+∞)上单调递增,
∴G(x)>G(1)=0成立,
∴x2+ax-xlnx-a->0成立,
即x2+ax-a>xlnx+成立.
4.解 (1)求导可得f′(x)=-+2a=,
令f′(x)=0,得x1=,x2=-,
当a=-2时,f′(x)≤0,函数f(x)在定义域(0,+∞)内单调递减;
当-2<a<0时,在区间(0,),(-,+∞)上f′(x)<0,f(x)单调递减,在区间(,-)上f′(x)>0,f(x)单调递增;
当a<-2时,在区间(0,-),(,+∞)上f′(x)<0,f(x)单调递减,在区间(-,)上f′(x)>0,f(x)单调递增.
(2)由(1)知当a∈(-3,-2)时,函数f(x)在区间[1,3]上单调递减,
所以当x∈[1,3]时,f(x)max=f(1)=1+2a,f(x)min=f(3)=(2-a)ln 3++6a.
问题等价于:对任意的a∈(-3,-2),恒有(m+ln 3)a-2ln 3>1+2a-(2-a)ln 3--6a成立,即am>-4a,
因为a<0,所以m<-4,
因为a∈(-3,-2),
所以只需m≤(-4)min,
所以实数m的取值范围为(-∞,-].
5.证明