文档介绍:1 / 10
[学习目标]
1、掌握追与与相遇问题的特点 2、能熟练解决追与与相遇问题
追与问题
1、追与问题中两者速度大小与两者距离变化的关系。
甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。若甲的速度小于乙的速度,则两者之间的距离。若一段时间内两者速度相等,则两者之间的距离。
2、追与问题的特征与处理方法:
“追与”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:
初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度相等,即v甲=v乙。
⑵ 匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②若甲乙速度相等时,甲的位置在乙的前方,则追上,并会有两次相遇
③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
⑶ 匀减速运动的物体
甲追赶同向的匀速运动的物体已时,情形跟⑵类似。
2 / 10
判断方法是:假定速度相等,从位置关系判断。
①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②若甲乙速度相等时,甲的位置在乙的前方,则追上,并会有两次相遇
③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
3、分析追与问题的注意点:
⑴ 要抓住一个条件,两个关系:
①一个条件是两物体的速度满足的临界条件,如
两物体距离最大、最小,恰好追上或恰好追不上等。
②两个关系是时间关系和位移关系,
通过画草图找两物体的位移关系是解题的突破口。
⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v-t图象的应用。
二、相遇
⑴ 同向运动的两物体的相遇问题即追与问题,分析同上。
⑵ 相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。
4 / 10
[典型例题]
例1.在十字路口,汽车以的加速度从停车线启动做匀加速运动,恰好有一辆自行车以的速度匀速驶过停车线与汽车同方向行驶,求:
什么时候它们相距最远?最远距离是多少?
在什么地方汽车追上自行车?追到时汽车的速度是多大?
例2.客车以20m/s的速度行驶,突然发现同轨前方120m处有一列货车正以6m/s的速度同向匀速前进,于是客车紧急刹车,,问两车是否相撞?
例3.汽车正以10m/s的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s
4 / 10
2的匀减速运动,汽车恰好不碰上自行车、求关闭油门时汽车离自行车多远?
例4.A、B两车沿同一直线向同一方向运动,A车的速度vA=4 m/s,B车的速度vB=10 m/ m处时,B车