1 / 11
文档名称:

基于划分的模糊聚类算法.pdf

格式:pdf   大小:908KB   页数:11页
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

基于划分的模糊聚类算法.pdf

上传人:小泥巴 2021/12/30 文件大小:908 KB

下载得到文件列表

基于划分的模糊聚类算法.pdf

相关文档

文档介绍

文档介绍:: .
1000-9825/2004/15(06)0858 ©2004 Journal of Software 软 件 学 报 ,

基于划分的模糊聚类算法
+
张 敏, 于 剑
(北京交通大学 计算机与信息技术学院,北京 100044)
Fuzzy Partitional Clustering Algorithms
ZHANG Min, YU Jian+
(School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China)
+ Corresponding author: Phn: +86-10-51688055, E-mail: ******@,
Received 2003-07-16; Accepted 2003-11-11
Zhang M, Yu J. Fuzzy partitional clustering algorithms. Journal of Software, 2004,15(6):858~869.
-9825/15/
Abstract: Fuzzy partitional clustering algorithms are widely used in pattern recognition field. Until now, more
and more research results on them have been developed in the literature. In order to study these algorithms
systematically and deeply, they are reviewed in this paper based on c-means algorithm, from metrics, entropy, and
constraints on membership function or cluster centers. Moreover, the advantages and disadvantages of the typical
fuzzy partitional algorithms are discussed. It is pointed out that the standard FCM algorithm is robust to the scaling
transformation of dataset, while others are sensitive to such transformation. Such conclusion is experimentally
verified when implementing the standard FCM and the maximum entropy clustering algorithm. Finally, the
problems existing in these algorithms and the prospects of the fuzzy partitional algorithms are discussed.
Key words: partitional clustering; C-me