文档介绍:. .
- 优选
梁的弯曲应力
梁在荷载作用下,横截面上一般都有弯矩和剪力,相应地在梁的横截面上有正应力和剪应力。弯矩是垂直于横截面的分布内力的合力偶矩;而剪力是切于横截面的分布内力的合力。所以,弯矩只与横截面上的正应力σ相关,而剪力只与剪应力τ相关。本章研究正应力σ和剪应力τ的分布规律,从而对平面弯曲梁的强度进行计算。并简要介绍一点的应力状态和强度理论。
梁的弯曲正应力
平面弯曲情况下,一般梁横截面上既有弯矩又有剪力,、DB段。而在CD段内,梁横截面上剪力等于零,而只有弯矩,这种情况称为纯弯曲。下面推导梁纯弯曲时横截面上的正应力公式。应综合考虑变形几何关系、物理关系和静力学关系等三个方面。
弯曲正应力一般公式
1、变形几何关系
为研究梁弯曲时的变形规律,可通过试验,观察弯曲变形的现象。取一具有对称截面的矩形截面梁,在其中段的侧面上,画两条垂直于梁轴线的横线mm和nn,再在两横线间靠近上、下边缘处画两条纵线ab和cd,如图8
. .
- 优选
.2(a)所示。(a)所示施加荷载,使梁的中段处于纯弯曲状态。从试验中可以观察到图8 .2(b)情况:
(1)梁表面的横线仍为直线,仍与纵线正交,只是横线间作相对转动。
(2)纵线变为曲线,而且靠近梁顶面的纵线缩短,靠近梁底面的纵线伸长。
(3)在纵线伸长区,梁的宽度减小,而在纵线缩短区,梁的宽度则增加,情况与轴向拉、压时的变形相似。
根据上述现象,对梁内变形与受力作如下假设:变形后,横截面仍保持平面,且仍与纵线正交;同时,梁内各纵向纤维仅承受轴向拉应力或压应力。前者称为弯曲平面假设;后者称为单向受力假设。
根据平面假设,横截面上各点处均无剪切变形,因此,纯弯时梁的横截面上不存在剪应力。
根据平面假设,梁弯曲时部分纤维伸长,部分纤维缩短,由伸长区到缩短区,其间必存在一长度不变的过渡层,称为中性层,(c)所示。中性层与横截面的交线称为中性轴。对于具有对称截面的梁,在平面弯曲的情况下,由于荷载及梁的变形都对称于纵向对称面,因而中性轴必与截面的对称轴垂直。
综上所述,纯弯曲时梁的所有横截面保持平面,仍与变弯后的梁轴正交,并绕中性轴作相对转动,而所有纵向纤维则均处于单向受力状态。
从梁中截取一微段dx,取梁横截面的对称轴为y轴,且向下为正,如图8
. .
- 优选
.3 (b)所示,以中性轴为y轴,但中性轴的确切位置尚待确定。根据平面假设,变形前相距为dx的两个横截面,变形后各自绕中性轴相对旋转了一个角度dθ,并仍保持为平面。中性层的曲率半径为ρ,因中性层在梁弯曲后的长度不变,所以
又坐标为y的纵向纤维ab变形前的长度为
变形后为
故其纵向线应变为
(a)
可见,纵向纤维的线应变与纤维的坐标y成正比。
2、物理关系
因为纵向纤维之间无正应力,每一纤维都处于单向受力状态,当应力小于比例极限时,由胡克定律知
将(a)式代入上式,得