文档介绍:-
. z.
两个20尾,加8,二是比尾,5+8=13,13比10大3,就加3个乘数首,3×2=6,8+6=14,两位数百位加,840+140=980。再如:28×35=980, 计算程序是:(2+1)×3=9,8×5=40,相连位940,一是比首,2比3小1,减一个乘数尾,减5,二是比尾,8+5=13,比10大3,加三个3,3×3=9,9-5=4,一位数十位加,940+40=980。
两个十位数相乘,首位都是5时,先求出5的平方,再求出尾数和的一半,加平方数里,为前积,然后求两个尾数的积,为后积,连接起来就应求的得数。如58×54=3132,其计算程序是:5×5=25,8+4=12,12的半数6,25+6=31,再加8×4=32。两积相连为3132。58×54就得3132。
两个十位数相乘,尾数都是5的乘法,先求出首位数的积,再加上首和的一半为前积,再加尾5的平方,就是应求的数。如:65×85=5525,计算程序是:6×8=48,6+8=14,半数为7,48+7=55,5×5=25,连接起来,就得5525。
-
. z.
两个首位数差1,尾为互补的乘法,其计算方法是:大1的首位数平方减去尾数的平方,就是得数。如:42×38=1596。其计算程序是:首先4比3大1,尾数又是互补,那就减平方差,40的平方减2的平方,1600-4=1596。
根据减平方差的计算原理,可以引深一步,但凡首位大1,后边的数字为互补的数码,都可以按减平方差公式计算。如:406×394=159964。计算程序是:400的平方减6的平方,160000-36=159964。
,另一数为连接数的乘法
但凡一个两位数的和为9,另一数为连接数,其计算方法是,头加1后,头乘头为前积,尾补乘尾补为后积,中间不管有多少位数,不用计算,都是头加1那个数。比方:72×4567=328824,计算程序是:7加1为8,8乘4等于32,为前积,两个尾补的积是:8×3=24,为后积,中间两位数是56,不用计算,这两位都是头加1的数,都是8,72×4567就得328824。
两个十位数相乘,首位都是9时,其计算方法是:将一数的补数从另一数中减掉,为前积,然后加上两个尾补的积为后积,连接起来,就为得数。如:97×94=9118,计算程序是:97-6等于91,为前积,两个尾补的积是3×6=18,91和18相连就得9118。
9的倍数是指18 27 36 45 54 63 72 81 198 297等等,都是9的倍数,都可以用一位数计算。如18=20-2,297=300-3,3996=4000-4等等,用一位去