文档介绍:.
1 / 9
用户运营知识结构归纳之用户画像
智能手机新增流量消失、红利过去、超级用户思维、智能手机市场国内饱和……
这是我们从2016年起至今,在各类互联网大咖以及媒介平台看到最多的关键词了。
因此,用户运营开始有了地位,如何的用户模型
构建用户画像的核心工作即是给用户贴"标签",而标签是通过对用户信息分析而来的高度精炼的特征标识
除去"标签化",用户画像还具有的特点是"低交叉率",当两组画像除了权重较小的标签外其余标签几乎一致,那就可以将二者合并,弱化低权重标签的差异
用户画像的作用是什么?
1、精准营销:分析产品潜在用户,针对特定群体利用短信邮件等方式进行营销
.
4 / 9
2、用户统计:比如中国大学购买书籍人数 TOP10,全国分城市奶爸指数
3、数据挖掘:构建智能推荐系统〔例如:利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌;利用聚类算法分析,喜欢红酒的人年龄段分布情况
4、进行效果评估,完善产品运营,提升服务质量:其实这也就相当于市场调研、用户调研,迅速下定位服务群体,提供高水平的服务
5、对服务或产品进行私人订制:即个性化的服务某类群体甚至每一个用户〔例如:某公司想推出一款面向5-10岁儿童的玩具,通过用户画像进行分析,发现形象="喜羊羊"、价格区间="中等"的偏好比重最大,那么就给新产品提供类非常客观有效的决策依据。
6、业务经营分析以及竞争分析:影响企业发展战略
用户画像的构建流程
数据收集:
网络行为数据:活跃人数、页面浏览量、访问时长、激活率、外部触点、社交数据等
服务内行为数据:浏览路径、页面停留时间、访问深度、唯一页面浏览次数等
用户内容偏好数据:浏览/收藏内容、评论内容、互动内容、生活形态偏好、品牌偏好等
.
5 / 9
用户交易数据:贡献率、客单价、连带率、回头率、流失率等
收集到的数据不会是100%准确的,都具有不确定性,这就需要在后面的阶段中建模来再判断,比如某用户在性别一栏填的男,但通过其行为偏好可判断其性别为"女"的概率为80%。
储存用户行为数据时最好同时储存下发生该行为的场景,以便更好地进行数据分析。
行为建模:
该阶段是对上阶段收集到数据的处理,进行行为建模,以抽象出用户的标签,这个阶段注重的应是大概率事件,通过数学算法模型尽可能地排除用户的偶然行为
这时也要用到机器学习,对用户的行为、偏好进行猜测,好比一个 y=kx+b 的算法,X 代表已知信息,Y 是用户偏好,通过不断的精确k和b来精确Y。
贴标签:
1、用户汽车模型:根据用户对"汽车"话题的关注或购买相关产品的情况来判断用户是否有车、是否准备买车
2、用户忠诚度模型:通过判断+聚类算法判断用户的忠诚度
3、身高体型模型:根据用户购买服装鞋帽等用品判断
4、文艺青年模型:根据用户发言、评论等行为判断用户是否为文艺青年
.
6 / 9
5、用户价值模型:判断用户对于网站的价值,对于提高用户留存率非常有用〔电商网站一般使用RFM 实现还有消费能力、违约概率、流失概率等等诸多模型。
关于标签化:
1、多级标签:第一级标签是基本信息〔姓名、性别;第二级是消费习惯、用户行为
2、多级分类:人口属性,地理位置〔工作地址、家庭地址
构建画像:
该阶段可以说是二阶段的一个深入,