文档介绍:四轴飞行器作品说明书
四轴飞行器
作品说明书
摘要
 
 
四轴飞行器在各个领域应用广泛。相比其他类型的飞行器,四轴飞行器硬件结构简单紧固定其他部件的平台,本工程采用的是碳纤维材料的机架。电机采用无刷直流电机,固定在机架的四个端点上,而螺旋桨固定在电机转子上,迎风面垂直向下。螺旋桨按旋转方向分正桨和反桨,从迎风面看逆时针转的为正桨,四个桨的中心连成的正方形,正桨反桨交错安装。
CAD设计机架如图:
2
整体如图2-1:
3
. 电气构成
电气局部包括:控制电路板、电子调速器、电池,和一些外接的通讯、传感器模块。控制电路板是电气局部的核心,上面包含MCU、陀螺仪、加速度计、电子罗盘、气压计等芯片,负责计算姿态、处理通信命令和输出控制信号到电子调速器。电子调速器简称电调,用于控制无刷直流电机。
电气连接如图2-2所示。
4
上位机是针对飞行器的需要,在Qt SDK上写的一个桌面程序,可以通过串口与飞行器相连,具备传感器校正、显示姿态、测试电机、查看电量、设置参数等功能,主界面如图(2-3)。
5
.下位机
下位机为飞行器上MCU里的程序,主要有三个任务:计算姿态、接受命令和输出控制。下位机直接控制电机功率,飞行器的平安性、稳定性、可操纵性都取决于它。下位机的三个任务实时性都要求很高,所以计算姿态的频率设为200Hz,输出控制的频率为100Hz,而接收到命令后,立即处理。因为电子调速器接受的信号为PWM信号,高电平时间在1ms~2ms之间,所以控制信号输出频率也不能太高。
飞行原理
飞行器涉及两个空间直角坐标系统:地理坐标系和机体坐标系。地理坐标系是固连在地面的坐标系,机体坐标系是固连在飞行器上的坐标系。四轴飞行器运动范围小,可以不考虑地面曲率,且假设地面为惯性系。地理坐标系采用“东北天坐标系〞,X轴指向东,为方便罗盘的使用,Y轴指向地磁北,Z轴指向天顶。机体坐标系原点在飞行器中心,xy平面为电机所在平面,电机分布在{|x|=|y|,z=0}的直线上,第一象限的电机带正桨,z轴指向飞行器上方。如图3-1所示。
6
飞行器的姿态,是指飞行器的指向,一般用三个姿态角表示,包括偏航角(yaw)、俯仰角(pitch)和滚转角(roll)。更深一层,姿态其实是一个旋转变换,表示机体坐标系与地理坐标系的旋转关系,这里定义姿态为机体坐标系向地理坐标系的转换。旋转变换有多种表示方式,包括变换矩阵、姿态角、转轴转角、四元数等。
螺旋桨旋转时,把空气对螺旋桨的压力在轴向和侧向两个方向分解,得到两种力学效应:推力和转矩。当四轴飞行器悬停时,合外力为0,螺旋桨的推力用于抵消重力,转矩那么由成对的正桨反桨抵消。当飞行器运动时,因为推力只能沿轴向,所以只能通过倾斜姿态来提供水平的动力,控制运动由控制姿态来间接实现。
假设四轴为刚体,根据质点系动量矩定理,角速度和角加速度由外力矩决定,通过控制四个螺旋桨,可以产生需要的力矩。首先对螺旋桨编号:第一象限的为0号,然后逆时针依次递增,如图(3-1)。同步增加0号和1号、减小2号和3号桨的功率,可以在不改变推力的情况下,提供x轴的力矩;同步增加1号和2
7
号、减小0号和3号桨的功率,可以在不改变推力的情况下,提供y轴的力矩;同步增加1号和3号、减小0号和2号桨的功率,可以在不改变推力的情况下,提供z轴的力矩。以上“
增加〞和“减小〞只是说明变化的方向,可以增加负数和减小负数,提供的力矩就沿对应轴的负方向了。
获取当前姿态是控制飞行器平稳飞行的根底,姿态的测量要求低噪声、高输出频率,当采用陀螺仪等需要积分的传感器时,还需要考虑积分发散等问题。近年来MEMS传感器越来越成熟、应用广泛,成为低本钱姿态测量的首选器件,因此该工程使用的传感器全部都是MEMS传感器。在使用传感器的值进行姿态计算之前,有必要校正传感器
由于实验条件限制,传感器的校正只有两项,分别对应两种类型的传感器:陀螺仪——静止时0输出的传感器、加速度计与罗盘——测量某向量场强度的传感器。
加速度计和罗盘都是测量所在点的某个向量场的值的传感器,静态时加速度计测的是等效重力加速度场,电子罗盘测的是地磁场。下面仅介绍加速度计的校正,罗盘的校正同理。加速度计测量的对象