1 / 49
文档名称:

涡街流量计原理及概述.doc

格式:doc   大小:5,395KB   页数:49页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

涡街流量计原理及概述.doc

上传人:布罗奇迹 2022/2/25 文件大小:5.27 MB

下载得到文件列表

涡街流量计原理及概述.doc

相关文档

文档介绍

文档介绍:涡街流量计原理及概述
涡街流量计原理及概述
在特定的流动条件下,一部分流体动能转化为流体振动,其振动频率与流速(流量)有确定的比例关系,依据这种原理工作的流量计称为流体振动流量计。目前流体振动流量计有三类:涡街流  流量计检测旋涡信号有5种方式。
  1) 用设置在旋涡发生体内的检测元件直接检测发生体两侧差压;
  2) 旋涡发生体上开设导压孔,在导压孔中安装检测元件检测发生体两侧差压;
  3) 检测旋涡发生体周围交变环流;
  4) 检测旋涡发生体背面交变差压;
  5) 检测尾流中
旋涡列。
  根据这5种检测方式,采用不同的检测技术(热敏、超声、应力、应变、电容、电磁、光电、光纤等)可以构成不同类型的VSF,如表1所示。
表1 旋涡发生体和检测方式一览表
序号
旋涡发生体截面形状
传感器
序号
旋涡发生体截面形状
传感器
检测方式
检测元件
检测方式
检测元件
1
方式 5)
超声波束
9
方式 2)
反射镜/光电元件
2
方式 2)
方式 3)
方式 5)
方式 1)
悬臂梁/电容,悬臂梁/压电片
热敏元件
超声波束
应变元件
10
方式 5)
膜片/压电元件
11
方式 3)
扭力管/压电元件
3
方式 1)
方式 2)
压电元件
压电元件
12
方式 4)
扭力管/压电元件
4
方式 1)
方式 2)
方式 2)
膜片/电容
热敏元件
振动体/电磁传感器
13
方式 4)
振动片/光纤传感器
14
方式 5)
超声波束
5
方式 1)
膜片/静态电容
15
方式 2)
应变元件
6
方式 1)
磁致伸缩元件
16
方式 1)
压电元件
7
方式 1)
膜片/压电元件
17
方式 4)
应变元件
8
方式 2)
热敏元件
18
方式 5)
超声波束
⑶ 转换器
  检测元件把涡街信号转换成电信号,该信号既微弱又含有不同成分的噪声,必须进行放大、滤波、整形
等处理才能得出与流量成比例的脉冲信号。
  不同检测方式应配备不同特性的前置放大器,如表2所列。
表2 检测方式与前置放大器
检测方法
热敏式
超声式
应变式
应力式
电容式
光电式
电磁式
前置放大器
恒流放大器
选频放大器
恒流放大器
电荷放大器
调谐-振动放大器
光电放大器
低频放大器
  转换器原理框图如图6所示。
图6 转换器原理框图
⑷ 仪表表体
  仪表表体可分为夹持型和法兰型,如图7所示。
图7 仪表表体
三、 优点和局限性
1. 优点
  VSF结构简单牢固,安装维护方便(与节流式差压流量计相比较,无需导压管和三阀组等,减少泄漏、堵塞和冻结等)。
  适用流体种类多,如液体、气体、蒸气和部分混相流体。
  精确度教高(与差压式,浮子式流量计比较),一般为测量值的( ±1%~±2%)R。
  范围宽度,可达10:1或20:1。
  压损小(约为孔板流量计1/4~1/2)。
  输出与流量成正比的脉冲信号,适用于总量计量,无零点漂移;
  在一定雷诺数范围内,输出频率信号不受流体物性(密度,粘度)和组分的影响,即仪表系数仅与旋涡发生体及管道的形状尺寸有关,只需在一种典型介质中校验而适用于各种介质,如图8所示。
图8 不同测量介质的斯特劳哈尔数
  可根据测量对象选择相应的检测方式,仪表的适应性强。
  VSF在各种流量计中是一种较有可能成为仅需干式校验的流量计。
2. 局限性
  VSF不适用于低雷诺数测量(ReD≥2×104),故在高粘度、低流速、***情况下应用受到限制。
  旋涡分离的稳定性受流速分布畸变及旋转流的影响,应根据上游侧不同形式的阻流件配置足够长的直管段或装设流动调整器(整流器),一般可借鉴节流式差压流量计的直管段长度要求安装。
  力敏检测法VSF对管道机械振动较敏感,不宜用于强振动场所。
  与涡轮流量计相比仪表系数较低,分辨率低,口径愈大
愈低,一般满管式流量计用于
DN300以下。
  仪表在脉动流、混相流中尚欠缺理论研究和实践经验。
四、分类与凡种类型产品简介
1. 分类
  涡街流量计可按下述原则分类。
  按传感器连接方式分为法兰型和夹装型。
  按检测方式分为热敏式、应力式、电容式、应变式、超声式、振动体式、光电式和光纤式等。
  按用途分为普通型、防爆型、高温型、耐腐型、低温型