文档介绍:《 数字系统设计 》
课 程 设 计 报 告
题 目:直流电机调速控制器设计
专 业:电子信息工程
班 级: 10电信(2)班
指导教师:
电气工程系
2013年5月27日
1、任务书
课题名示。
PWM调速原理
平均速度和占空比的关系
由图所示可以看出,Vd与占空比D并不是完全线性关系(图中实线),当系统允许时,可以将其近似地看成线性关系(图中虚线)。因此也就可以看成电机电枢电压Ua与占空比D成正比,改变占空比的大小即可控制电机的速度。
由以上叙述可知:电机的转速与电机电枢电压成比例,而电机电枢电压与控制波形的占空比成正比,因此电机的速度与占空比成比例,占空比越大,电机转得越快,当占空比α=1时,电机转速最大。
基于FPGA的直流电机调速方案
图 基于FPGA的直流电机调速系统
如图所示为基于FPGA的直流电机调速方案的方框图,用FPGA产生PWM波形,只需要FPGA内部资源就可以实现,如数字比较器、锯齿波发生器等均为FPGA内部资源,我们只要直接调用就可以。外部端口U_D、EN1、Z/F、START接在键盘电路上,CLK2和CLK0接在外部时钟电路上,所用到的时钟频率为100MHz和50MHz,。
其工作原理是:设定值计数器的设置PWM的占空比。当U/D=1时,输入CLK2,使设定值计数器的输出值增加, PWM的占空比增加,电机转速加快;当U/D =0时,输入CLK2,使设定值计数器的输出值减小,PWM的占空比减小,电机转速变慢。
在CLK0的作用下,锯齿波计数器输出周期性线性增加的锯齿波。当计数值小于设定值时,数字比较器输出高电平;当计数值大于设定值时,数字比较器输出低电平,由此产生周期性的PWM波形。
旋转方向控制电路控制直流电动机转向和启/停,该电路由两个2选1的多路选择器组成,Z/F键控制选择PWM波形是从正端Z进入H桥,还是从负端F进入H桥,以控制电机的旋转方向。当Z/F=1时,PWM输出波形从正端Z进入H桥,电机正转。当 Z/F=0时,PWM输出波形从负端F进入H桥,电机反转。
Start键通过“与”门控制PWM输出,实现对电机的工作停止/控制。当START=1时,与门打开,允许电机工作。当START=0时,与门关闭,电机停止转动。
H桥电路由大功率晶体管组成,PWM输出波形通过方向控制电路送到 H 桥, 经功率放大以后对直流电机实现四象限运行
。并由EN1信号控制是否允许变速。
第二章直流电机PWM调速控制电路设计
总体设计
,基于FPGA的直流电机PWM控制电路主要由四部分组成:控制命令输入模块、控制命令处理模块、控制命令输出模块、电源模块。键盘电路、时钟电路是系统的控制命令输入模块,向FPGA芯片发送命令,FPGA芯片是系统控制命令的处理模块,负责接收、处理输入命令并向控制命令输出模块发出PWM信号,是系统的控制核心。控制命令输出模块由H型桥式直流电机驱动电路组成,它负责接收由FPGA芯片发出的PWM信号,从而控制直流电机的正反转、加速以及在线调速。电源模块负责给整个电路供电,保证电路能够正常的运行。
FPGA直流电机PWM 控制电路
,其内部逻辑电路如图
。
START是电机的开启端,U_D控制电机加速与减速,EN1用于设定电机转速的初值,Z_F是电机的方向端口,选择电机运行的方向。CLK2和CLK0是外部时钟端,其主要作用是向FPGA控制系统提供时钟脉冲,控制电机进行运转。
通过键盘设置PWM信号的占空比。当U_D=1时, 表明键U_D按下,输入CLK2使电机转速加快;当U/D =0,表明键U_D松开,输入CLK2使电机转速变慢,这样就可以实现电机的加速与减速。
Z_F键是电机运转的方向按键,当把Z_F键按下时,Z_F=1,电机正转;反之Z/F=0时,电机反转。
START是电机的开启键,当START=1,允许电机工作;当START=0时,电机停止转动。
H桥电路由大功率晶体管组成,PWM输出波形通过由两个二选一电路组成的方向控制电路送到 H 桥, 经功率放大以后对直流电机实现四象限运行。并由EN1信号控制是否允许变速。
本设计系统的命令输入模块是键盘电路和时钟电路,通过以按键的方式向FPGA控制系统表达人的命令来实现直流电机的正转、反转、停止和加减速,实现人机互换。下面就对键盘电路和时钟电路的类型以及工作原理分别进行论述。
键盘电路有两种类型,其中一种是独立式键盘电路。独立式键盘电路结构简单、操作方