文档介绍:1、如图所示的工件叫做燕尾槽,它的横断面是一个等腰梯形,∠B叫做燕尾角,AD叫做外口,BC叫做里口,AE叫做燕尾槽深度,AD=200毫米,BC=300毫米,AE=80毫米,求燕尾角B的大小是多少?(精确到1′)
E
A
B
C
D
解:由题意得:BE =
在Rt△ABE中,∠AEB = 90°
tanB =
∠B = 58°00'
答:燕尾角B的大小约为58°00′
练习:1、燕尾槽的横断面是等腰梯形,如图是一燕尾槽的横断面,其中燕尾角B是55°,外口宽AD是180mm,燕尾槽的深度是70mm,求它的里口宽BC(精确到1mm).
解:作AE⊥BC,DF⊥BC,
垂足为E、F
那么在Rt△ABE中.
答:燕尾槽的里口宽BC约为278mm.
cotB=
∴BE=AE·cotB=70×≈(mm).
∴BC=2BE+AD≈2×+180≈278(mm).
sin 55°= ,cos55°= ,tan55°=
由题意得:BE = CF,AD = EF
2、如图,一梯子AB长25m,顶端A斜靠在墙AC上,梯子
底端离墙7m,则梯子的顶端离地面多少米?
如果梯子的底端在水平面上向墙外滑动8m,则梯子的
顶端下滑多少米?
梯子的顶端离地面24米,
梯子的顶端下滑了4米
7
25
8
25
20
3、如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA为a米,此时,梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面墙上N,此时梯子的倾斜角45°,则这间房子的宽AB是多少米?
a
a米
例2、一条细绳系着一个小球,在平面内摆动,已知细绳从悬挂点O到球心的长度为50厘米,小球在左右两个最高位置时,细绳相应所成的角为40度,求小球在最高位置和最低位置时的高度差()
解:由题意得:OA = OB = OC = 50cm
在Rt△AOH中,∠AHO = 90°
cos∠AOH =
OH=OA·cos∠AOH=50cos20°≈
答:最高位置