文档介绍:小升初奥数知识点总结
小学奥数都有哪些知识点和重点?看看下面的大汇总,学习数学总归用得到哦!还包括小升初中常考的题目类型等。有工程问题、行程问题、质数合数问题等等。
1.、小升初奥数知识点〔年龄问题的三大特征〕
①当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[]=4;[]=0;[]=2;
关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原那么进行运算。
9、奥数知识点〔定义新运算〕
小升初奥数知识点〔数列求和〕
数列求和
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
根本概念:首项:等差数列的第一个数,一般用a1表示;
项数:等差数列的所有数的个数,一般用n表示;
公差:数列中任意相邻两个数的差,一般用d表示;
通项:表示数列中每一个数的公式,一般用an表示;
数列的和:这一数列全部数字的和,一般用Sn表示.
根本思路:等差数列中涉及五个量:a1 ,an,d, n, sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
根本公式:通项公式:an = a1+〔n-1〕d;
通项=首项+〔项数一1) ×公差;
数列和公式:sn,= (a1+ an)×n÷2;
数列和=〔首项+末项〕×项数÷2;
项数公式:n= (an- a1)÷d+1;
项数=〔末项-首项〕÷公差+1;
公差公式:d =〔an-a1〕〕÷〔n-1〕;
公差=〔末项-首项〕÷〔项数-1〕;
关键问题:确定量和未知量,确定使用的公式
10、加法乘法原理和几何计数
加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。
关键问题:确定工作的分类方法。
根本特征:每一种方法都可完成任务。
乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法。
关键问题:确定工作的完成步骤。
根本特征:每一步只能完成任务的一局部。
直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。
直线特点:没有端点,没有长度。
线段:直线上任意两点间的距离。这两点叫端点。
线段特点:有两个端点,有长度。
射线:把直线的一端无限延长。
射线特点:只有一个端点;没有长度。
①数线段规律:总数=1+2+3+…+〔点数一1〕;
②数角规律=1+2+3+…+〔射线数一1〕;
③数长方形规律:个数=长的线段数×宽的线段数:
④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数
11 、小升初奥数知识点〔质数与合数〕
质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N= ,其中a1、a2、a3……an都是合数N的质因数,且a1……。
求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互质数:如果两个数的最大公约数是1,这两个数叫做互质数。
12 、小升初奥数知识点〔约数与倍数〕
约数和倍数:假设整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:
1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;
18的约数有:1、2、3、6、9、18;