1 / 50
文档名称:

高三文科数学知识点总结.docx

格式:docx   大小:595KB   页数:50页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

高三文科数学知识点总结.docx

上传人:可爱小月 2022/3/27 文件大小:595 KB

下载得到文件列表

高三文科数学知识点总结.docx

相关文档

文档介绍

文档介绍:.实用文档 .
高中数学 必修 1 知识点
第一章 集合与函数概念
【 】集合的含义与表示
〔1〕集合的概念
集合中的元素具有确定性、互异性和无序性 .
〔 2〕常用数集及其记法
的图象
O
一元二次方程
b
b
2
4ac
ax2
bx
c
0(a
0)
x1,2
2a
x1 x2
b
无实根
〔其中 x1 x2 )
2a
的根
ax2
bx
c
0(a
0)
{ x | x
x1 或 x
x2}
{ x | x
b }
R
的解集
2a
ax2
bx
c
0(a
0)
{ x | x1
x
x2}
的解集
〖 〗函数及其表示
.
.实用文档 .
【 】函数的概念
〔 1〕函数的概念
①设 A 、 B 是两个非空的数集,如果按照某种对应法那么 f ,对于集合 A 中任何一个数 x ,在集合
B 中都有唯一确定的数 f ( x) 和它对应,那么这样的对应〔包括集合 A , B 以及 A 到 B 的对应法
那么 f 〕叫做集合 A 到 B 的一个函数,记作 f : A B .
②函数的三要素 : 定义域、值域和对应法那么.
③只有定义域相同,且对应法那么也相同的两个函数才是同一函数.
〔 2〕区间的概念及表示法
①设 a, b 是两个实数,且
a
b ,满足 a
x b 的实数 x 的集合叫做闭区间,记做
[ a,b] ;满足
a x b 的实数 x 的集合叫做开区间,记做
(a,b) ;满足 a x
b ,或 a x
b 的实数 x 的
集合叫做半开半闭区间,分别记做
[ a,b) ,
(a,b] ;满足 x a, x
a, x b, x
b 的实数 x 的集
合分别记做 [a, ),( a,
),(
, b],(
, b) .
注意: 对于集合 { x | a
x
b} 与区间 (a, b) ,前者 a 可以大于或等于 b ,而后者必须
b .
3〕求函数的定义域时,一般遵循以下原那么:
f ( x) 是整式时,定义域是全体实数.
② f ( x) 是分式函数时,定义域是使分母不为零的一切实数.
③ f ( x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
⑤ y tan x 中, x k (k Z ) .
2
⑥零〔负〕指数幂的底数不能为零.
⑦假设 f ( x) 是由有限个根本初等函数的四那么运算而合成的函数时,那么其定义域一般是各根本初
等函数的定义域的交集.
⑧对于求复合函数定义域问题, 一般步骤是: 假设 f (x) 的定义域为 [a,b] ,其复合函数 f [ g( x)] 的
定义域应由不等式 a g ( x) b 解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.
⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.
4〕求函数的值域或最值
求函数最值的常用方法和求函数值域的方法根本上是相同的.事实上,如果在函数的值域中存在一个
.
.实用文档 .
最小〔大〕数,这个数就是函数的最小〔大〕值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:
①观察法:对于比拟简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.
③判别式法:假设函数 y f ( x) 可以化成一个系数含有 y 的关于 x 的二次方程
a( y) x2 b( y) x c( y) 0 ,那么在 a( y) 0时,由于 x,

最近更新

2025年这13种表现不受领导待见(共3篇) 7页

2025年运动会的广播励志稿(精选篇) 34页

2025年迎新年会活动策划(精选篇) 57页

2025年过年感受演讲稿(通用篇) 20页

哲学和心理学 16页

2025年身边热爱生命的故事(推荐5篇) 11页

2025年路上的风景优秀作文(集锦23篇) 34页

2025年趣的下雨天教学方案(锦集篇) 27页

2025年赞美八一建军节一句话简短祝福语(共4篇.. 14页

2025年度旅游景区管理费合同模板新 10页

普外抗菌药物合理选用专家讲座 91页

2025年度新能源货车运输合作协议 10页

2025年度新能源产业合伙经营拆伙协议书 10页

2025年读冰心散文集有感(集锦篇) 17页

物流中心整体设计方案 71页

2025年读《詹天佑》有感作文400字(通用20篇).. 18页

2025年度数据中心空调拆除及智能化改造合同范.. 10页

2025年度教育资产经营管理委托协议 10页

2025年请勿乱扔垃圾标语(推荐篇) 26页

2025年度护理员家庭护理雇佣合同 9页

2025年语文-中国共产党八十年的奋斗业绩和基.. 26页

2025年度快餐外卖品牌区域代理合同 10页

浙江省金华市东阳市2022-2023学年八年级上学期.. 24页

邦普SF305000A冷水机控制器 16页

财务管理学第九版立体化数字教材 5页

广西物流职业技术学院招考聘用笔试题库含答案.. 341页

新人教版数学二年级下册:第6单元测试卷(含答.. 10页

GBT 13912-2020 金属覆盖层钢铁制件热浸镀锌层.. 17页

客情关系的有效维护ppt课件 16页

基督徒生活课程 25页