文档介绍:西安交通大学学报
Journal of Xi'an Jiaotong University
ISSN 0253-987X,CN 61-1069/T
GloVe 模型生成字符向量;其次,将两种向量进行拼接作为模型输入向量,对输入向
量进行枚举拼接形成跨度信息矩阵;然后,使用多维循环神经网络和注意力网络对跨度信息矩阵进行运
算,增强跨度之间的语义联系;最后,将跨度信息增强后的矩阵进行跨度分类以识别命名实体。实验表
明:与传统的跨度方法相比该方法能够有效增强跨度之间的语义依赖特征,从而提升命名实体识别的召
回率;该方法在 ACE2005 英文数据集上比传统的方法召回率提高了 %,并且取得了最高的 F1 值。
关键词:命名实体识别;跨度语义增强;多维循环神经网络;ALBERT 预训练语言模型
中图分类号: 文献标志码:A 文章编号:0252-987X(2022)07-0000-00
Named Entity Recognition Approach with Span Semantic Enhancement
GENG Rushan1, CHEN Yanping1,2, TANG Ruixue1,2, HUANG Ruizhang1,2, QIN Yongbin1,2, DONG Bo3
(1. College of Computer Science and Technology, Guizhou University, Guizhou 550025, China;
Provincial Key Laboratory of Public Big Data, Guizhou University, Guizhou 550025, China;
3. School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, China)
Abstract:In response to the problems of word-to-word semantic information loss and poor model recall of
named entity recognition methods, a named entity recognition method with cross-dimensional semantic
information enhancement is propose