文档介绍:第1节焊接机械手的总体方案设计
概述
,核工业,航空航天\能源交通,,,,,焊接自动化生产已是必然趋势.
焊接机器人主要优点如下:
1)稳定和提高焊接质量,保证其均匀性;
2)提高劳动生产率,一天可24小时连续生产
3)改善工人劳动条件,可在有害环境下工作;
4)降低对工人操作技术的要求;
5)缩短产品改形换代的准备周期,减少相应的设备投资;
6)可实现小批量产品的焊接自动化;
7)能在空间站建设,核能设备维修,深水焊接等极限条件下完成人工难以进行的焊接作业.
8)为焊接柔性生产线提供技术基础.
焊接作为机械制造业中仅次与装备加工和切削加工的第三大加工作业,对其进行机器人柔性加工技术及其相关的控制器PC化,网络化和智能化的应用研究已成为焊接自动化发展的必然趋势.
实现焊接自动化生产的意义和必要性:
随着我国一步一步地走向国际市场大舞台和加入国际贸易组织,国内竞争和国际竞争的界限将越来越模糊,我国的经济发展和国际接轨是大势所趋,,对中型企业也将更加重要.
基本技术参数设计
根据任务的来源不同,按制造厂的产品规划或用户订货要求来确定。在总体方案设计阶段先要确定的主要参数有如下几种:
(1)额定负载。
额定负载是指在机器人规定的性能范围内,机械接口处所能承受负载的允许值。它主要根据作用于机械接口处的力和力矩,包括机器人末端执行器的质量、抓取工件的质量及惯性力(矩),外界的作用力(矩)(如切削机器人的切削力)来确定。
(2)按作业要求确定工作空间,同时要考虑作业对象对机器人末端执行器的位置和姿态要求,以便为后续方案设计中的自由度设计提供依据。
(3)额定速度。
指工业机器人在额定负载、匀速运动过程中,机械接口中心的最大速度。应综合考虑作业效率要求、作业线协调生产要求、惯性力(矩)、驱动与控制方式、定位方式和精度要求等各种因素来确定。其中惯性力(矩)这一因素,由于机器人的总体结构尚未设计,故该阶段只能概略估计。
(4)驱动方式的选择。
目前所采用的方式是气压驱动、液压驱动、电动机驱动。此次设计选用的是步进、伺服电动机。步进电动机输出力较小,伺服电动机可大一些,适用于运动控制要求严格的中、小型机器人。控制性能好,控制灵活性强,可实现速度、位置的精确控制,对环境无影响。体积小,需减速装置。维修使用较复杂,成本较高,。
(5)性能指标。
按作业要求确定。一般指位姿准确度及位姿重复性(点位控制)、轨迹准确度及轨迹重复性(轨迹控制)、最小定位时间及分辨率等。同时还可对机械结构的刚度、关节几何运动精度等提出要求。
焊接机器人的主要组成
(1)机器人系统包括:由移动式或固定式的操作机、电源、控制系统以及操作并监控机器人的装置、外部设备或传感器的通讯接口所组成的机器人控制装置(硬件和软件);末端执行器;机器人完成作业所需的外部设备、装置或传感器。所用的外部设备均由机器人的控制系统管理。
(2)手臂和手腕是机器人操作机中的基本部件,它由旋转运动和往复运动的机构组成。其结构形式是多种多样的,但多数机器人的手臂和手腕是由关节和杆件构成的空间机构,一般由3-10个自由度组成,工业机器人一般为3-6个自由度。由于机器人具有多自由度手臂、手腕的机构,使操作运动具有通用性和灵活性,这也是区别于一般自动机的特点。
(3)机器臂的控制:在电动伺服系统中,驱动机械臂各关节的是步进电机或直流伺服电机。步进电机从驱动器得到一系列脉冲信号,每个脉冲信号使步进电机轴产生一定的角位移。一般不需要反馈回路和位置编码器,控制比较简单。采用直流伺服电机的控制系统以测速器和角度编码作为反馈装置,能够精确地控制机械臂关节轴的运动,它的工作状态平稳,旋转速度可以连续调节,对加速和减速指令都能迅速作出反应。
(4)腕部机构支承机器人手部装置并调整其姿态,一般有2-3个自由度,使位于机械臂末端的手爪产生俯仰摆动和绕自身轴线的转动,这些运动的合成,使机器人的手部相对于操作对象形成灵活的工作姿态。
(5)机器人的手部装置又称末端执行器。根据作业性质不同,机械臂末端的执行器有不同形式。
焊接机器人和喷涂机器人的末端分别为固定焊枪和喷枪的夹