文档介绍:乘法教学感悟
乘数由一位数拓展为两位数,是整数乘法学习过程中的一个飞跃,学生在这一关键环节学习中掌握的知识以及形成的学习方法,将为进一步学习乘数数位更多的笔算乘法奠定坚实的基础。教材循序渐进,逐层安排了两位数乘整十数的口算、两位数乘两位数乘法教学感悟
乘数由一位数拓展为两位数,是整数乘法学习过程中的一个飞跃,学生在这一关键环节学习中掌握的知识以及形成的学习方法,将为进一步学习乘数数位更多的笔算乘法奠定坚实的基础。教材循序渐进,逐层安排了两位数乘整十数的口算、两位数乘两位数的基本笔算、两位数乘两位数的估算、乘数末尾有0的笔算的简便方法。下面就这一单元的教学谈几点思考. 
一、在自主探索中获取方法、体验学法
教材所安排的四个例题,无一例外的呈现了多样化的算法,算法多样化的基础首先就是自主探索,而自主探索的前提是激活已有的知识经验,,通过学生的自主探索活动,主动构建新的知识,逐步积累解决问题的经验,这一意图贯穿了整个单元。因此,我们在教学中必须很好地为学生实现有效的自主探索活动提供有力的支持。
1. 关注已有的知识经验.
,要对学生已经存在的相关知识经验做到心中有数。例如,在第30页内容的学习过程中,探索12×10与探索12×30之前的已有知识经验是迥然不同的,已经掌握的12×10的算法和在探索12×10算法过程中获得的探索活动经验必然构成探索12×,要充分利用好教材所提供的运牛奶、订牛奶、产牛奶、挤牛奶等系列场景,,在两位数乘整十数的教学中,清晰的呈现工人在一箱一箱搬运每箱12瓶的牛奶的场景,无疑对不同思维层次、不同思维方式下的各类学生能够产生不同的解决问题的方式起着重要的作用,而恰恰是首先有了这种基于自身经验的形象算法,为探讨、理解并接受较为抽象的简洁算法,提供了坚实的基础.
与此同时,值的注意的是,激活已有的知识经验并不等同于象过去我们惯常的教学中,将与今天的学习密切相关的旧知于课始复习一遍,即所谓“埋下伏笔”并非一个好的选择。因为,正是某些“针对性”很强的课始复习降低了学生自主探索的难度,从而也压缩了学生独立思考的空间。比如,在教学28×12之前,如果进行12=(  )+(  ) 和12=(