文档介绍:第 1 页
第 2 页
第 3 页
第 4 页
第 5 页
(2)延长线段BO至点P,使OP=2OB,OP交 于另一点C,
且连结AC。求证:AP是 的切线.
26.(本题7、x≥2 2、2 3、4 4、(5,3) 5、6 6、6 7、10 8、16 9、 10、50度 11、x=2 12、 或 (写对一点给1分)
二、选择题(每小题3分,共15分)
第 7 页
13、C 14、C 15、B 16、D 17、B
三、解答题
18、原式= (3分,化对一个给1分)
=9 (5分)
19、原式= (化对第一个给2分)= (5分)
20、(1) (5分)(对一个给2分,结合学生选择的解法,分步给分)
(2) (对一个给2分,结合学生选择的解法,分步给分)
21、解:(1)∵-1,2 ,3 ,5的极差为6∴ <-1,或 >5(1分)
∴5 =8或 (-1)=8 ∴ =-3 或 =7 3分(对一个给2分)
(2) =1 (4分) (6分)
22、解:D①平行四边形(2分)(2)证明:证出Rt△ABF≌ Rt△CDE (3分)得到AF=CE (4分) ∵AF∥CE (5分) ∴四边形AFCE为平行四边形(6分)
23、(1)∵ (2分) ∴k<9 (3分)
(2) ∵k是上面符合条件的最大整数 ∴k=8 (4分)
当k=8时,方程x2-6x+8=0的根为x1=2 x2=4; (6分)
把x=2代入方程x2+mx-4=0得4+2m-4=0 ∴m= 0 (7分)
第 8 页
把x=4代入方程x2+mx-4=0得16+4m-4=0 ∴m= -3(8分)
24、(1) (1分)
轴有且只有一个公共点,∴顶点的纵坐标为0.∴C1的顶点坐标为(—1,0)(2分)
(2)画图,大致准确(4分)
(3)设C2的函数关系式为 把A(—3,0)代入上式得 ∴C2的函数关系式为 (5分)∵抛物线的对称轴为 轴的一个交点为A(—3,0),由对称性可知,它与x轴的另一个交点坐标为(1,0). (6分)(4)n>1或n<-3(8分,写出一个给一分)
25、解:证明:(1)连接OD.
是劣弧 的中点,
(1分)又∵OA=OD,OD=OB
∴△AOD和△DOB都是等边三角形(2分) ∴ AD=AO=OB=BD ∴四边形AOBD是菱形(3分)
(2)∵OP=2OB,OA=OC=OB ∴PC=OC=OA(4分) 为等边三角形(5分)
∴PC=AC=OC∴∠CAP=∠CPA 又∠ACO=∠CPA+∠CAP
(6分)又 是半径 是 的切线(7分)
26、解:(1)连结OC、OA,作AD⊥OC,垂足为D。则OD=r-8(1分) 在Rt△AOD中,r2=(r-8)2+122
第 10 页
(3分) r=13(4分)
(2)当 ,当 (7分,对一个给2分)
27、解:(1)140 (2分)
(2)w内 = x(y -20)- 62500 = x2+130 x ,(3分)
w外 = x2+(150 )x.(4分)
(3)当x = = 6500时,w内最大;(5分)
由题意得 ,(6分)
解得a1 = 30,a2 = 270(不合题意,舍去).所以 a = 30.(7分)
(4)当x = 5000时,w内 = 337500, w外 = .选择在国外销售才能使所获月利润较大(8分)
28.⑴∵抛物线的对称轴为直线x=1,∴ ∴b=-2.(1分)
∵抛物线与y轴交于点C(0,-3),∴c=-3,(2分)∴抛物线的函数表达式为y=x2-2x-3.
⑵∵抛物线与x轴交于A、B两点,当y=0时,x2-2x-3=0.
∴x1=-1,x2=3.∵A点在B点左侧,∴A(-1,0),B(3,0)(3分)
设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kx+m,
则 ,(4分)∴ ∴直线BC的函数表达式为y=x-3.(5分)
第 10