文档介绍:小学奥数的学问点汇总
1、年龄问题的三大特征
年龄问题:已知两人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。
年龄问题的三个根本特征: ①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时数为标准,求全部给出数及基准数的差;再求出全部差的和;再求出这些差的平均数;最终求这个差的平均数和基准数的和,就是所求的平均数,详细关系见根本公式②
8、周期循环数
周期循环及数表规律
周期现象:事物在运动变更的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰 年:一年有366天;
①年份能被4整除;②假如年份能被100整除,则年份必需能被400整除;
平 年:一年有365天。
①年份不能被4整除;②假如年份能被100整除,但不能被400整除;
9、抽屉原理
抽屉原则一:假如把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种状况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
视察上面四种放物体的方式,我们会发觉一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:假如把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解学问点:[X]表示不超过X的最大整数。
例[]=4;[]=0;[]=2;
关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后根据抽屉原则进展运算。
10、定义新运算
根本概念:定义一种新的运算符号,这个新的运算符号包含有多种根本(混合)运算。
根本思路:严格根据新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后根据根本运算过程、规律进展运算。
关键问题:正确理解定义的运算符号的意义。
留意事项:①新的运算不确定符合运算规律,特殊留意运算依次。
②每个新定义的运算符号只能在本题中运用。
11、数列求和
等差数列:在一列数中,随意相邻两个数的差是确定的,这样的一列数,就叫做等差数列。
根本概念:首项:等差数列的第一个数,一般用a1表示;
项数:等差数列的全部数的个数,一般用n表示;
公差:数列中随意相邻两个数的差,一般用d表示;
通项:表示数列中每一个数的公式,一般用an表示;
数列的和:这一数列全部数字的和,一般用Sn表示.
根本思路:等差数列中涉及五个量:a1 ,an, d, n, sn,,通项公式中涉及四个量,假如己知其中三个,就可求出第四个;求和公式中涉及四个量,假如己知其中三个,就可以求这第四个。
根本公式:通项公式:an = a1+(n-1)d;
通项=首项+(项数一1) ×公差;
数列和公式:sn,= (a1+ an)×n÷2;
数列和=(首项+末项)×项数÷2;
项数公式:n= (an+ a1)÷d+1;
项数=(末项-首项)÷公差+1;
公差公式:d =(an-a1))÷(n-1);
公差=(末项-首项)÷(项数-1);
关键问题:确定已知量和未知量,确定运用的公式;
12、二进制及其应用
十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。
=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100
留意:N0=1;N1=N(其中N是随意自然数)
二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。
(2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7
+……+A3×22+A2×21+A1×20
留意:An不是0就是1。
十进制化成二进制:
①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。
②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法始终