文档介绍:医科高等数学知识点
医科高等数学知识点
医科高等数学知识点
limf(x)A
f(x0)f(x0)
A
x
x0
2.
法例1(夹逼法例)若在同一极限过程中
t0
t
1
e
lim(1
x)x
e
x0
医科高等数学知识点
医科高等数学知识点
医科高等数学知识点
例题求lim(1
2)3x
lim(1
2)3x
lim[(1
2
)
x(
2)(3x)
lim[(1
2
)
x
e6
2]
x
2]6
x
x
x
x
x
x
x
x
求lim(x
1
)x
lim(x
1
)x
2
)x
2
x
1
]2(1
2
例题2
lim(1
lim
[(1
)2
)
x
x
1
x
x
1
x
x
1
x
x
1
x
1
e2?1
e2
(1
1)x
lim(1
1)x
e
解法2
lim
x
x
x
2
1
e
x
(1
1)x
lim[(1
1)
x]1
e
x
x
x
(1)f(x)在点x0处有定义;(2)
limf(x)存在;
(3)lim
f(x)
f(x0).
x
x0
x
x0
函数f
x在x
处连续
是函数f
(
x在x
11.
(
)
0
)
0
医科高等数学知识点
医科高等数学知识点
医科高等数学知识点
处既左连续又右连续.
医科高等数学知识点
医科高等数学知识点
医科高等数学知识点
(x)的中断点.
(1)f(x)在点x0没有定义;(2)lim
f(x)不存在;(3)lim
f(x)存在,但limf(x)f(x0).
xx0
xx0
xx0
跳跃中断点
如果f(x)在点x0处左,右极限都存在,
但limf(x)
limf(x),则称点x0为函数f(x)的跳跃间
xx0
xx0
断点.
可去中断点
如果f(x)在点x0处的极限存在,
但limf(x)
Af(x0),或f(x)在点x0处无定义,则
xx0
称点x0为函数f(x)的可去中断点.
第二类中断点中包括无穷中断点(有一段的极限为正或负无穷)
震荡中断点(limsin
1
)
x
0
x
ln(1
x)
1
.原式limln(1x)x
lne=