文档介绍:正弦定理和余弦定理
正弦定理
第一章解三角形
高中新课程数学必修⑤
第一课时
问题提出
,三边a,b,c,及锐角A,B之间有怎样的数量关系?
A
B
C
a
b
c
,,我们需要建立相关理论进行沟通,这是一个有待探究的课题.
,许多与测量有关的实际问题,;飞机在飞行中测量一座山顶的海拔高度;在地面上测量顶部或底部不可到达的建筑物的高度;测量在海上航行的轮船的航速和航向等.
正弦定理
知识探究(一):正弦定理的形成
思考1:在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,则sinA,sinB,sinC分别等于什么?
C
A
B
a
b
c
思考2:将上述关系变式,边长c 有哪几种表示形式?由此可得什么结论?
C
A
B
a
b
c
思考3: 可变形为
, 在锐角△ABC中,该等式是否成立?为什么?
C
A
B
a
b
D
思考4:
若∠C为钝角, 是否成立?
若∠A为钝角, 是否成立?
若∠B为钝角, 是否成立?
C
A
B
a
b
C
A
B
a
b
D
D
思考5:在任意三角形中,同理可得,
, 因此有
?
在一个三角形中,各边和它所对角的正弦之比相等.
知识探究(二):正弦定理的向量证明
思考1:在△ABC中,向量, , 之间有什么关系?
C
A
B
a
b