文档介绍:高一数学知识点:幂函数
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数
高一数学知识点:幂函数
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为任意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域还必需根[据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。当x为不同的数值时,幂函数的值域的不怜悯况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种状况来争论各自的特性:
首先我们知道假如a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),明显x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排解了为0与负数两种可能,即对于x0,则a可以是任意实数;
排解了为0这种可能,即对于x0和x0的全部实数,q不能是偶数;
排解了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不怜悯况如下:
假如a为任意实数,则函数的定义域为大于0的全部实数;
假如a为负数,则x确定不能为0,不过这时函数的定义域还必需依据q的奇偶性来确定,即假如同时q为偶数