1 / 93
文档名称:

(材料分析课件)13 第十三讲 红外光谱.ppt

格式:ppt   大小:1,937KB   页数:93页
下载后只包含 1 个 PPT 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

(材料分析课件)13 第十三讲 红外光谱.ppt

上传人:autohww 2017/7/3 文件大小:1.89 MB

下载得到文件列表

(材料分析课件)13 第十三讲 红外光谱.ppt

相关文档

文档介绍

文档介绍:第四章光谱分析
第三节红外光谱
一、概述
由于分子内部运动所牵涉到的能级变化比较复杂,分子吸收光谱也就比较复杂。
在分子内部除了电子运动状态之外,还有核间的相对运动,即核的振动和分子绕重心的转动。
分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。
红外吸收光谱是一种分子吸收光谱。
一、概述
当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。
一、概述
1红外光区的划分
红外光谱在可见光区和微波光区之间,波长范围约为 ~ 1000µm,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区( ~ µm ),中红外光区( ~ 25µm ),远红外光区(25 ~ 1000 µm )。
近红外光区的吸收带( ~ µm )主要是由低能电子跃迁、含氢原子团(如O-H、N-H、C-H)伸缩振动的倍频吸收产生。该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。
一、概述
中红外光区吸收带( ~ 25µm )是绝大多数有机化合物和无机离子的基频吸收带(由基态振动能级(=0)跃迁至第一振动激发态(=1)时,所产生的吸收峰称为基频峰)。
由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数据资料,因此它是应用极为广泛的光谱区。通常,中红外光谱法又简称为红外光谱法。
一、概述
远红外光区吸收带(25~1000µm)是由气体分子中的纯转动跃迁、振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。
由于低频骨架振动能灵敏地反映出结构变化,所以对异构体的研究特别方便。此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究。但由于该光区能量弱,除非其它波长区间内没有合适的分析谱带,一般不在此范围内进行分析。
一、概述
红外吸收光谱一般用T ~ 曲线或T ~ (波数)曲线表示。纵坐标为百分透射比T%,因而吸收峰向下,向上则为谷;横坐标是波长(单位为µm),或(波数)(单位为cm-1)。
波长与波数之间的关系为:
(波数)/cm-1=104 /(/µm)
中红外区的波数范围是4000~ 400cm-1 。
一、概述

红外光谱法主要研究在振动中伴随有偶极矩变化的化合物。
除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。
除光学异构体,某些高分子量的高聚物以及在分子量上只有微小差异的化合物外,凡具有结构不同的两个化合物,一定不会有相同的红外光谱。
一、概述
红外吸收带的波数位置、波峰的数目以及吸收谱带的强度反映了分子结构上的特点,可以用来鉴定未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与分子组成或化学基团的含量有关,可用以进行定量分析和纯度鉴定。
由于红外光谱分析特征性强,气体、液体、固体样品都可测定,并具有用量少,分析速度快,不破坏样品的特点。因此,红外光谱法不仅与其它许多分析方法一样,能进行定性和定量分析,而且是鉴定化合物和测定分子结构的用效方法之一。
二、基本原理

⑴辐射光子具有的能量与发生振动跃迁所需的跃迁能量相等
红外吸收光谱是分子振动能级跃迁产生的。为讨论方便,以双原子分子振动光谱为例,说明红外光谱产生的条件。
m1
m2