1 / 19
文档名称:

江苏省姜堰区蒋垛中学2022年高考数学四模试卷含解析.doc

格式:doc   大小:2,038KB   页数:19页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

江苏省姜堰区蒋垛中学2022年高考数学四模试卷含解析.doc

上传人:421989820 2022/7/24 文件大小:1.99 MB

下载得到文件列表

江苏省姜堰区蒋垛中学2022年高考数学四模试卷含解析.doc

相关文档

文档介绍

文档介绍:2021-2022高考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试解题的关键,属于基础题.
3.C
【解析】
根据韦恩图可确定所表示集合为,根据一元二次不等式解法和定义域的求法可求得集合,根据补集和交集定义可求得结果.
【详解】
由韦恩图可知:阴影部分表示,
,,
.
故选:.
【点睛】
本题考查集合运算中的补集和交集运算,涉及到一元二次不等式和函数定义域的求解;关键是能够根据韦恩图确定所求集合.
4.D
【解析】
根据底面为等边三角形,取中点,可证明平面,从而,,可求得到平面的距离,画出几何关系,设球心为,即可由球的性质和勾股定理求得球的半径,进而得球的表面积.
【详解】
设为中点,是等边三角形,
所以,
又因为,且,
所以平面,则,
由三线合一性质可知
所以三棱锥为正三棱锥,
设底面等边的重心为,
可得,,
所以三棱锥的外接球球心在面下方,设为,如下图所示:
由球的性质可知,平面,且在同一直线上,设球的半径为,
在中,,
即,
解得,
所以三棱锥的外接球表面积为,
故选:D.
【点睛】
本题考查了三棱锥的结构特征和相关计算,正三棱锥的外接球半径求法,球的表面积求法,对空间想象能力要求较高,属于中档题.
5.B
【解析】
根据函数的对称轴以及函数值,可得结果.
【详解】
函数,
若,则的图象关于对称,
又,所以或,
所以的值是7或3.
故选:B.
【点睛】
本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题
6.D
【解析】
试题分析:由已知可得有两个不等实根.
考点:1、余弦定理;2、函数的极值.
【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.
7.C
【解析】
由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.
【详解】
由题意,,则函数的周期是,
所以,,
又函数为上的奇函数,且当时,,
所以,.
故选:C.
【点睛】
本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.
8.D
【解析】
由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.
【详解】
解:把函数图象向右平移个单位长度后,
可得的图象;
再根据得到函数的图象关于直线对称,
,,
,函数.
在上,,,
故,即的值域是,
故选:D.
【点睛】
本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.
9.D
【解析】
①通过证明平面,证得;②通过证明,证得平面;③求得三棱锥体积的最大值,由此判断③的正确性;④利用反证法证得与一定不垂直.
【详解】
设的中点为,连接,则,,又,所以平面,所以,故①正确;因为,所以平面,故②正确;当平面与平面垂直时,最大,最大值为,故③错误;若与垂直,又因为,所以平面,所以,又,所以平面,所以,因为,所以显然与不可能垂直,故④正确.
故选:D
【点睛】
本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题.
10.D
【解析】
由题意得,再利用基本不等式即可求解.
【详解】
将平方得,
(当且仅当时等号成立),

的最小值为,
故选:D.
【点睛】
本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题.
11.C
【解析】
首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.
【详解】
设公差为d,由题知,

解得,,
所以数列为,
故.
故选:C.
【点睛】
本题主要考查了等差数列的基本量的求解,属于基础题.
12.C
【解析】
方法一:设等差数列的公差为,则,解得,.
方法二:因为,所以,.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
根据三角形中位线证得,结合判断出垂直平分,由此求得的值,结合求得的值.
【详解】
∵,∴为中点,,∵,∴垂直平分,∴,即,∴,,即.
故答案为:
【点睛】
本小题主要考查双曲线离心率的求法,考查化归与转化的数学思想方法