1 / 17
文档名称:

2022年山东省烟台市重点名校高三适应性调研考试数学试题含解析.doc

格式:doc   大小:1,707KB   页数:17页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

2022年山东省烟台市重点名校高三适应性调研考试数学试题含解析.doc

上传人:421989820 2022/7/24 文件大小:1.67 MB

下载得到文件列表

2022年山东省烟台市重点名校高三适应性调研考试数学试题含解析.doc

相关文档

文档介绍

文档介绍:2021-2022高考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答。
1.B
【解析】
按补集、交集定义,即可求解.
【详解】
={1,3,5,6},={1,2,5,6},
所以={1,5,6}.
故选:B.
【点睛】
本题考查集合间的运算,属于基础题.
2.D
【解析】
令,可得.
在坐标系内画出函数的图象(如图所示).
当时,.由得.
设过原点的直线与函数的图象切于点,
则有,解得.
所以当直线与函数的图象切时.
又当直线经过点时,有,解得.
结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.
即函数在区间上有三个零点时,.
点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法
(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;
(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.
3.A
【解析】
根据幂函数的定义域与分母不为零列不等式组求解即可.
【详解】
因为函数y=2x-3+1x-3,∴2x-3≥0x-3≠0,
解得x≥32且x≠3;
∴函数f(x)=2x-3+1x-3的定义域为32,3∪3,+∞, 故选A.
【点睛】
定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数fx的定义域为a,b,则函数fgx的定义域由不等式a≤gx≤b求出.
4.C
【解析】
由题可,所以将已知式子中的向量用表示,可得到的关系,再由三点共线,又得到一个关于的关系,从而可求得答案
【详解】
由,则
,即,所以,又共线,则.
故选:C
【点睛】
此题考查的是平面向量基本定理的有关知识,结合图形寻找各向量间的关系,属于中档题.
5.A
【解析】
,故应左移.
6.A
【解析】
设,取与重合时的情况,计算出以及的值,利用排除法可得出正确选项.
【详解】
如图所示,利用排除法,取与重合时的情况.
不妨设,延长到,使得.
,,,,则,
由余弦定理得,
,,
又,,
当平面平面时,,,排除B、D选项;
因为,,此时,,
当平面平面时,,,排除C选项.
故选:A.
【点睛】
本题考查平行线分线段成比例定理、余弦定理、勾股定理、三棱锥的体积计算公式、排除法,考查了空间想象能力、推理能力与计算能力,属于难题.
7.B
【解析】
设直线的方程为代入抛物线方程,利用韦达定理可得,,由可知所以可得代入化简求得参数,即可求得结果.
【详解】
设,(,).易知直线l的斜率存在且不为0,设为,,所以,.因为,所以,得,所以,即,,所以.
故选:B.
【点睛】
本题考查直线与抛物线的位置关系,考查韦达定理及向量的坐标之间的关系,考查计算能力,属于中档题.
8.A
【解析】
设 成立;反之,满足 ,但,故选A.
9.B
【解析】
根据正弦函数的性质可得集合A,由集合性质表示形式即可求得,进而可知满足.
【详解】
依题意,;


故,
则.
故选:B.
【点睛】
本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题.
10.B
【解析】
先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可.
【详解】
由题意,双曲线的一条渐近线方程为,即,
∵是直线上任意一点,
则直线与直线的距离,
∵圆与双曲线的右支没有公共点,则,
∴,即,又
故的取值范围为,
故选:B.
【点睛】
本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题.
11.B
【解析】
根据f(x)为偶函数便可求出m=0,从而f(x)=﹣1,根据此函数的奇偶性与单调性即可作出判断.
【详解】
解:∵f(x)为偶函数;
∴f(﹣x)=f(x);
∴﹣1=﹣1;
∴|﹣x﹣m|=|x﹣m|;
(﹣x﹣m)2=(x﹣m)2;
∴mx=0;
∴m=0;
∴f(x)=﹣1;