文档介绍:概率论论文
《Monte Carlo方法的应用》
院系: 建筑学院
班级: 1334602
姓名: 孙诗祎
学号: 1133460206
指导教师:田波平
摘要
Monte Carlo方法,源于二战美国关于研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城——摩纳哥的Monte Carlo——来命名这种方法,为它蒙上了一层神秘色彩。
Monte Carlo方法的基本思想很早以前就被人们所发现和利用。19世纪人们用投针试验的方法来确定圆周率π。20世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能。
Monte Carlo方法研究的问题大致可分为两种类型:一种是问题本身就是随机的,另一种本身属于确定性问题,但可以建立它的解与特定随机变量或随机过程的数字特征或分布函数之间的联系,因而也可用随机模拟方法解决。
本文介绍了Monte Carlo方法的思想,从计算定积分和古典概率两方面的应用进行研究,给出了实例及其Mathematical实现程序。
关键词:Monte Carlo方法,积分计算,古典概率,模拟
目录
1 Monte Carlo方法简介
2 Monte Carlo方法在定积分中的应用
3 Monte Carlo方法在计算多重积分中的应用
4 在古典概率问题中的应用
5 误差分析
1 Monte Carlo方法简介
Monte Carlo方法思想概述
Monte Carlo方法,有时也称随机模拟(Random Simulation)方法或统计试验(Statistical Testing)方法。它的基本思想是:首先建立一个概率模型或随机过程,使它的参数等于问题的解;然后通过对模型或过程的观察、抽样来计算所求参数的统计特征;最后给出所求解的近似值,而解的精度可用估计值的标准误差来表示。
假设所求的量是随机变量的数学期望,那么近似确定的方法是对进行重复抽样,产生相互独立的值的序列并计算其算术平均值:
根据大数定理,当充分大时,以概率1成立,即可用作为的估计值。
Monte Carlo方法以概率统计理论为基础,以随机抽样(随机变量的抽样)为手段,:方法和程序的结构简单,易分析、易理解;收敛的概率性和收敛速度与问题的维数无关,很好的避免了维数问题;受问题条件限制的影响较小,很好的提高可行性
。
使用Monte Carlo方法的步骤如下:
(l)构造或描述概率过程
(2)实现从已知概率分布中抽样
(3)建立各种估计量
Monte Carlo方法的可行性
蒙特卡罗方法有很强的适应性,问题的几何形状的复杂性对它的影响不大。该方法的收敛性是指概率意义下的收敛,因此问题维数的增加不会影响它的收敛速度,而且存贮单元也很省,这些是用该方法处理大型复杂问题时的优势。因此,随着电子计算机的发展和科学技术问题的日趋复杂,蒙特卡罗方法的应用也越来越广泛。它不仅较好地解决了多重积分计算、微分方程求解、积分方程求解、特征值计算和非线性方程组求解等高难度和复杂的数学计算问题,而且在统计物理、核物理、真空技术、系统科学 、信息科学、公用事业、地质、医学,可靠性及计算机科学等广泛的领域都得到成功的应用。从Monte Carlo方法的基本思想可以得到它通常的做法,通过号利用数学或物理方法产生[0,1]中均匀分布的随机数,,可以由大数定理,:
(1)如果随机变量的分布函数是,,(),可以定义:
的分布,这里假定是连续函数,则对于有:
 (1)
即服从上的均匀分布.
(2)反之,如果服从上的均匀分布,则对于任意的分布函数,令,则:
(2)
因此是服从分布函数的随机变量.
所以我们只要能够产生中均匀分布的随机变量的子样,那么通过(2)、就可以运用Monte Carlo方法进行随机模拟,解决一些实际的问题。
2 Monte Carlo方法在定积分中的应用
,设,有限,,令,并设是在上均匀分布的二维随机变量,(如图2).
图2
(即)称为中的,,若我们进行次投点,