文档介绍:关于线性代数的核心问题分析
[摘要]回顾线性代数的历史基础上,分析了关于线性代数的几个核心问题:第一介绍了几种关于线性代数基本结构问题的看法;第二介绍了关于线性代数的两个基本问题,即线性和线性问题;第三介绍了线性代数的研究对象;第四分析了线性代数的结构体系。
[关键词]线性代数;线性问题;线性运算
上世纪80年代以来,随着计算机应用的普及,线性代数理论被广泛应用到科学、技术和经济领域,因此线性代数也成为高等院校理工科各专业的一门基础课程,文章简述线性代数的相关核心核心问题。
一、线性代数的历史
线性代数是代数学的一个分支,今天数学界一致认它作为一门独立学科诞生于上世纪30年代,因为吸纳了系统的线性代数内容的著作是在这一时期产生的,如Van的名著代数学第二卷就把线性代数作为其中的短短一章。但是线性代数的一些初级内容如行列式、矩阵和线性方程组的研究可以追溯到二百多年前;19世纪四五十年代Grassmann创立了用符号表述几何概念的方法,给出了线性无关和基等概念,这标准着线性代数内容近代化开始;19世纪末向量空间的抽象定义形成,并在20世纪初被广泛用于泛函分析研究,从而使线性代数成为以空间理论为终结的独立学科,因此可以说线性代数是综合了若干项独立发展的数学成果而形成的。从上世纪六七十年代起线性代数进入了大学数学专业课程,在我国这门课程称为高等代数,它以线性代数为主体并纳入了一章多项式理论。无论是高等代数或线性代数,这个课程有两个特点:一个特点是各部分内容相对独立,整个课程呈现出一种块状结构,原因是线性代数学科的形成过程本身就没有一条明确的主线。我们几乎可以找到从线性方程组,行列式,向量,矩阵,多项式,线性空间,线性变换中的任何一个分块开始展开的教材,其展开过程主要取决于作者串联这些分块的形式逻辑的脉络。另一个特点是内容抽象,要真正掌握线性代数的原理与方法必须具备较强的抽象思维能力,即对形式概念的理解能力和形式逻辑的演绎能力,而这两种能力要求几乎超越了大多数学生在中学阶段的能力储备,而必须在学习这门课程的过程中重塑。主要是这两个原因,线性代数被认为是一门非常难掌握的课程,而克服这一困难的关键就是针对线性代数课程的这两个特点进行有效的课程改革。
二、关于线性代数基本结构问题的看法
线性代数基本结构问题,学者们历来有许多不同的看法,较为常见的是以下几种:
第一种是以矩阵为中心。这一看法认为整个线性代数以矩阵理论为核心,将矩阵理论视为各个内容联系的纽带。在求线性方程组、判定方程组的解以及研究线性空间问题时,矩阵理论是重要工具。例如正交矩阵和对称矩阵主要应用于欧氏空间和二次型方程问题中。可见,只要对矩阵知识有了全面系统的理解后,就能将各种问题都化解为矩阵理论中的一部分,引申为矩阵问题。
第二种是以线性方程组为中心。这一关观点认为线性方程组是线性代数研究的基本问题。具体操作过程中,将线性方程组的理论和方法应用到各个章节,由此引出矩阵、行列式、向量等理论,最后列出方程组、求解,然后进一步应用,串联起各部分内容。这一理论较为系统、科学,常常被初学者采纳。
第三是一种线性代数体系,以线性变换和线性空间为核心,在学习线性代数之前,学生要先掌握关系、集合、环、群、域等概念,形成对高等数学的研究对象、知识结构、表达方式的初步认识。线性代数体