文档介绍:该【考研数学知识点总结-高等数学 】是由【cjc201601】上传分享,文档一共【38】页,该文档可以免费在线阅读,需要了解更多关于【考研数学知识点总结-高等数学 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。:.
-
;<
1.
*->0X
(1)y=[/!"#$%=/(x)
***@itf
1+-e
;<|l+_=eHlim
-
nf
i
(2)ftdt,9|X#(p2x,-#/tlim(l+v)v=e
!"##
$.4.678KLMNO P678QR
/M(MM(%)-/fe(x)3(X)
dx5.TU;<(9 P678VWX)(YO
9:Z)
[lim/(x)=O,limg(x)=O,_lim_`=/
43
(1)/=0,b/(x)c9g(x)d678#e3
/(x)=O[g(x)],bg(x)c9/(x)hd67
8i
(2)/00,b/(x)jg(x)ckd678i
(3))1=1,b/(%)jg(x)c P678,
e3
¢3x5(£x2,1+1
/CO~g(6
arctanx-x-----1-----A+-1
P678352/7+1
qxf0r(1+¥=1+¦q§+A+¨©ª«+¬)
sinx~x,tanx~x,arcsinx~x,arctanx~x
,12,
1-cosx,~yx'e-1~x,ln(l+x)~x,
6.­©®~$
(1+x)ay1~(XX~$1.¯)[(1)lim/(x)=0,limg(x)=0
0
Z.{|}~(2)6°±²#g'(x)³
1.|$O~$
$f'(x)
$1.|Y(3)limz-A(µ8)
g(x)
(1)()x,?%(
f(x)
$lim/=A(µ8)
)#$limx“=A#_A2
?y>00
(2).ex,,()/KM(f'(x)
(·¦¸lim¹_¹c67º»¼½#$
g.()
)#$limx“=A#_A4M
Wy>30
iXd
¹¾¿Àlim/¹_¹c67º»¼½)
$2.()[g(x)/(xbMx)
~ÁÂJ2.(Z¯)[(1)lim/(x)=oo,lim^(x)=oo
limg(x)=A,Iim/i(x)=A,$lim/(x)=A
00
;<
(2)Å°±²#r(x),g’(x)³:.
-
f'(x)ì#¦¸ñòãÏa,bóYx#ôf(x)<M,
(3)lim,=A(µoo)
8(x)
$bM
/(x)ËõöÌëºìik÷,3Çë
$lim=A(µ8)ømo
3.(ùì)¦¸
/(x)âãÏ
7.-Ç{|
+Ax)-f(x)!"#_ëºìOë8ìúMOû#Áüýòùòû
ÈÉ;<lim°°=rG)o˦¸
Ar->0OMþÏóÿc,a,"
Ì
8.Ç{|
f^)=c
ÈÉ;<͹xdx˦¸Ì
/(x),!"/(a)
Î.
ÏÐÑ#/0)%&!'(,())
*J!
ÏÐ4Ñ:
(1)ÓYÑÏÐ
/,=0
[%c
y=/(x)ÏÐi¦¸/(x)ÏÐ
.
/012*34
XÕÖ×|Ø#$bXc/(X)ÓYÑÏÐ#89:;
00
#89<
i
(C)=0d(c)=0
ÓYÑÏÐ.Ù,ÚÏÐOÛÜÏÐi
(xa)=axa-'(@)d(x*)=axaTC(@)
(2)ÓZÑÏÐf
(sinx)=GcosX6?sinx=cosxdx
ÓYÑÏÐ3ÝÞÏÐßbÓZÑÏÐ
i
(cosx)-=-sinxdcosx=-sinxdx
opÓZÑÏÐ67ÏÐOàáÏÐi
f2
(tanx)==sec"xJtanx=sec2xdx
.âãÏ!"
MN2
(cotx)==csc~xJcotx=-escxdx
âãÏäÌ!"
/(X),3å5ÈÉ
f
(secx)==secxtanxdsecx=secxtanxdx
MNiæçMN3èØLéi
1.()¦¸
/(X)âãÏê,“(cscx)==-cscxcotxdescx=-escxcotxdx
!"#$/()©ËiäÌi(log”x)=SS(a>0,aw1)
xlna
dx
2.(ëºìOë8ì)¦¸
/(x)âdlog“x=SS(a>0,aw1)
xlna
ãÏí!"#$æ5ãÏYëºìMO(inx)=-dInx=^dx
xx
ë8ìmo
(Y)Ina(a>0,ow1)
ëºìMOë8ì#”Ǧ
Ç[/(ï0)=%cãÏËi,3ðÕ
dax=axInadx(a>0,aw1)
2:.
Z[\]^*-_`\
9)ade'=e'dx¬')!"9'(f)wO,¯J
[arcsinx)=~darcsinx=ax
71-%27i-%2dxo')
G¡7
farccosx)=-~^---gi,
,771-%2darccosx=--rdx2
7i-x
dy=d-.d'^xXif_\__”-"3”4
!1]
(arctanx)=]+/clarctanx=.2dx2
1+xdxdxdt5[°F
(j)'=ldarecotx--dx
1+x2
[(J___
5.²³7t'
Inx+y/x2+a2=-
V722y=/(x)|²x=g(y),´µ¶
7!"
+a
dln(x+Vx2+a21=.~dx
''/2,2
Vx+ci
)'(r(x“0)
ln(.r+5/x2-a2)l=~=----f'(x)6
J1/
dIn(x+Jx2_q2)_.,q
G¡7g'(y)=&'6*=.L
dydx3
's;t'dx
[/(x)±g(x)]=rG)±g'(x)
f_r(x)__rWl("x")
[/w(x)g(x)]=f'(x)g(x)+f(x)g'(x)
(¹º3»
x=y)z{))|“0)
6.¼s;t'
-Jy=y(x)¦§½m>)=0¿¨3!³>'|¦
3.~s;t'
tÀ
y=/()!u=(p(x),p(x)x
7!f(u)
ÁF(x,y)=0´Â|ÃÄų7!ÁyÆÇ
*“
7!'~y=/[]x
7!
!È~³7C:;!ÉÊËÌÍy'|<Î(Ï
"
dy=dydu=)]”(x)ÐÍÑy)
dxdudx
7.³7t'
=/()=/[0]'(1)C
Ò¿Ó|´ÂÔ!ÉÊËȼ³7
C=”¦tÍ7>'o
 01¡89¢£³7tÕÖÈ
×ØÙ³7
4.¥¦§¨3|s;t'ÚÛ
ÜÝÞ¦³7
x=)!y=©(f)¨3y=)>(x))ª«'(!ßØÙ>=[/(à|@È|á¦t
3:.
Z[\]^*-_`\
y=.ãä
åæçÈ~s;t'èé(1)ì
8.
8#
7|ßë
(2)Þ(íî))
7ì
/(X)X
8O/(X)X
7
'Je(a,b),
9.³¡7(22,ïð)
Ò³Íy',y',A,òóÍôõ£!ÉÊöÍy(n),÷Êÿ/
b-a
Èøùtúû
/(-/(a)=(a<^<b)
ü@È|ý`|¡7C
(1)y=dy(")=e'
/(JC0+Ar)-/(x0)=(%+AY
(2)y="(0,aw1)y(")=a'(lny(0<6&<1)
(3)y=sinx())_sin0x++'-./012345684748
y
,2,
()G4H6IJ(x)K0,L/(x)
(„),:;
(4)y=cosx>=cosQx+,
,,@;F(a,8)GNOP
(5)y=\nxy(")=(-1R(_1)!/(x),g(x)F(N)Gi4H6I
UVWPXYZn[HP
\]^_`ar
[()(")=*")()("4)()f'(x)=g(x),LF(a,b)Gf(x)=g(_r)+c,lmcN
UXVXZXVXnVOP
k=(Ptuvw)
~WPf(x)g(x)
lmxyz)!’|()"}’
(1)F
3,;i
)(X)=v(x)
(2)F
(a,)Gi4HIg'(x)W0
~“(X)u(x)3[4H
LFJw(a,b)
mqrs
rs
g(b)-g(aYg)©("D
~WP/(X)
(1)F
a,(opmqrsN ¡mqrsZAJ6¢
£¤¥g(x)=X6opmqrs¦ ¡mqr
(2)F
(a,6)G4H;
s)
***@f(a)=f(b)u.¨©rs(¨©`a)(PtnPtª)
rs1.(¬­®¯°Z"[¨©`a)
LFJe()6/'(J)=0
~/(X)FX±
[HP6L
`a
 ¡mqrs
~WP/(X)
/(X)=/(x)+-X)+--^x7)A+-X)+R(A)
01!02!0n!0"
4:.
²³Pt´µ¶-·¸Pt
G->Xo)
X/(X)
lmH“(x)=o[(x+%)"](xfXo)»N¬­®
¯°
,lim/B=°2.(!)
W/),
"/(X)#X$%X&(X)
½¾¿ÀÁÂÃmĨ©`a¦-Ť¥6ÆÇv
Ȥ¥ÉÊ1Zn,Ë5ÌOÄZ͸WP'/,(x)=O,
o
e”,sinx,cosx,ln(l+x^D(l+x)”(NÐOP)¸Z
-.x/0f\x0)=0%/(%)2
[¨©`a3wÑÒ
rs2( ¡¯°Z[¨©`a)
3425678
~/(x)FÓÔ/Z
(a,b)G
+1[HP6F9:42;7<=9>?***@A
BC
DEFG
[a,b]
[HP6LÌxG[a,b\,
`a
JK
()=()+Õ11(_)+Ö×_Ø+A+6(/)(-)Ù()"/(X)#x$LM#0<O
PSR
fxf)ªÚ----12
0Iol
U(X)7V#;W&)=0
lmR"(x)=Û;Üp(XnÝ6(JFÞ0/ßà
10Z[#(%0-]0)R^
X$_
)
»N ¡¯°f'[x}>0,`#(P0%0+b)R^
X$_
¾áa»N5/NmâZ[¨©`a1
/(x)<0'f(x0)
x0=O6»N[äåæç`a
2°Z[#(%%)R^
x$_
èlg7?“(x)=0,ë쨩`a¦íîN¨©ï
/f(x)<0,`#(%0,e0+3)R^
X$_
P6-Fð¾ÞñïPmòóB
HPZôÄf\x)>0,'f(x)
Q
n.õö´µ
÷3°Z[#(/
d>,x)R(//+d>)R^
0
~WP/(X)F(/)G
r÷6X()GZøn
x$/'(X)ijklmn/(%)74o74
¶,L
è¶ÝFnVùú6ÌûùúGZün¶
X(XHXo)6ý
/(X)</(Xo)6L»/Go)NWP/(X)
"/(x)#$_qr%:(x0)=0,
ZnVÀÿx0/(X)
U(%)#0,'
Z[V#
uvwxyzuvR^
}/~'(/)<0/(%)X
x(x{/)|_/(x)>/(%0)'/(%)/(X)
}U()>0/()
5:.
-
y=/(x)#(,R4
q.
1./(x)#y=/(x)D4:
/(x)#()R<_27I
DqrU(x)
IqDwqrÈÉ;qr7V#
X],A,x*,/(%(),A,f(xk),f(a\f(b)o
X|Êx2>ËÊxkH
/(xJ,A
I¯DyÈ=LMÌÍÎ@Ïqr
ijZ[ij7lС4ÑÒ©
B ¡4/(x)#1]MB
IÓDÔÒ©
 ¡4/(x)#m
Ó.ÖØ
2.()£¤¥¦1.ÙÚÖØ
§£¤¥¦B¨©ª«¬­³lim/(x)=8;lim/(x)=8
8®¨©#¬­R()XT”x->a~
'x=ay=/(x)
ÙÚÖØ
¯.°±
1.°3²2.ÛÜÖØ
"/(x)#¬­/LM³y^´7l@¤,µ³limf(x)=b,;limf(x)=b
XT+00XT-8
¶_
'y=4y=/(x)
ÛÜÖØ
·¸
¹1[y()/(º»}<1[f(x)+/(x)]m3.ÕÖ
x+x
221
"20202"2³lima0,ÝS"(%)-"]=b
X>4<0
×30,
'/(x)#/4(°);limlim[/(%)-ax\=b
XT-8
#¼½y=/(x)^´@¾#¿'y=Þ+84y=/(x)
ÕÖØ
ß.à(
q)
()À'y=/G)4(°)
"y=/(x),á#M(x,y)$à
Z[y=/(x)_ÁÂÃ
ÁÄ#
k=
P_____³AY0,'R=LM(x,y)$
6(¿)'y=/(x)4(°)1+ãÜI
2.3²àäå#M°×?
Ïæ
°KÅ
w|AW|=A,'DàBç=DèçRä
3.°±FÆ
åèéàè
"f(x)#()RÇ_qr/G),
73êK
Z[#()RÃ
x,¶_/'(x)¹0,'
.ëìêKíî
y=/(x)#(a,b)R4°a+1
1.\xadx=^+C(a~l,ïð)
[
Z[#()RÃ
x,¶_/'(o)<0,'
6:.
-
JKLMNO7P82'
2.í=ln|1+C
LQRST782UVW
=~ax-\-C(q>O,awl)(1)jf(ax+b)dx=+J/("+b)d(ar+b)
JIna
^exdx=ex+C(aO0)
(2)jf(ax"+b)x',-'dx=6y{axn+b)d(ax"+b
=sinx+Ct
=-cosx+C(a#0,&#0)
6,xdx=[~~^=tanjc+C(3)J/Qnx)***@f(\nx)d(inx)
7.,esc2xdx=J^2dx=-cotx+C
(4)QR&R,QTU
JJsmx
f--f
JJx1
=secx+C
ZJ//)$=2j7(4)dG)
=-cscx4-C
(6)^f(ax)axdx=6y(a')d(_)
=-Incosx|+C
=ln|sinx|+C(a>0,aN1)
=ln|secx+tanx|4-)ed=)"e,)
=ln|cscx-cotx|+C(7)j/(sinx)cosxdx=J/(sinx)d(sinx)
(8)j/(cosx)sinxdx=-j/(cosx)d(cosx)
14.[z____=arcsin+CQ!0)
a(9)j/(tanj;)sec2xdx=J/(tanx)rf(tanx)
j-dx1xxr(&!')
=_arctan_+C
Ja2+x2aa
CIO)J/(cotx)csc2xdx=-j/(cotx)j(cotx)
“*+,+'(Q°)6
1)j/(secx)secxtanxdx=j/(secx)d(secx)
(12)J/(cscx)cscxcotx(ix=-j/(cscx)j(cscx)
(.)
(13)&=J/(arcsinx)d(arcsinx)
*./0123425123
/0123(7823)(14)h+i''':"k=-J/("ccosx)d(arccosx)
9=:(&)+C,<e(x)=>+?IJ
4
)
(15)J^mx)k=Jf(arctanx)d(arctanx)
***@A(B)
J/%)]"(x)g]7%)]HI)\f(u)duf(arccotx)“_/(arccotx)d(arccotx)
(nJ1+/1
=F(u)+C=F[(p(x)]+C
7:.
opqrstu-vwqr
xyz{|}~LQR82kVz“”+
8:.
opqrstu-vwqr
inT/:
farctan-()2
dx=-1/1arctan1arctan-V0
(17)
2X
1+x2XX
U({q
VRUV/
(18)Q)
/[ln(x+)].=J[(+
((+.221
hInxyjxad\nx
x=asint
(a>0)
(2219)/
[()]y/a2+x2x=atant
^jx2-a1)]/(lnQ+Jx2_°2)
dx=a
ylx2-a2
(a>0)/22x=asect
y/x-a~
A
(20)^=W(x)+C(/(x)#0)3,25123
9&(x),v(x)¡¢£¤R>q+¥
*/0123
9x=9(r)=>,¦d(/)w0,¨J&(x)dv(x)="(x)v(x)-Jv(x)d“(x)
[M)]e'(r)"r=G(r)+C,ªJ&(x)M(x)dx="(x)v(x)-J/(x)v(x)dx
¥_______Q_«Q25123¬­1q®¯°w(x)¯°
J9]f[(p(t)]^(/)Jr=G(r)+C=G[A1(x)]+C
M(x)¢±²³'
´®f=+'(x)µx=°(/)Rq'(1)PP(x)sinax,P(x)cosarêU+
nnn
6*/0123¶·¸qQ¹VR­1q+º»
P.(x)µSë¸ìV+'µLq+zíà&ë25123+
/0¼V½¾+´L¿RÀÁ/2µÂ·ÃW
6ÃW­1qJxÄÅ+6ªxR±È9ªîë¡ïe""sincue,85
µð'')ñ¸ìV52µ
u(x)„
ÉÊËRÌqVRV+Íyjae'+bw'
(2)P„(x)lnx,P„(x)arcsinx,ó,(x)arctanxê
ÎzÏVÐÑ=++ÒPx=9')ÓÔÕ¢
0U+P“(x)µnë¸ìVïP“(x)µv'(x),ôInx,
V+Ö×
xTÀÁ/x=erØ='
arcsinx,arctanxµ&(x),Q25123ë+­1
6*ÃW­1qÙ¢/4%2+&+'(AHO),
qRUVõöÀç+o÷´øù3'
ÛÜÏÒPx=<()ÜJÞ,Ö(3)e''sinë+e^cosfoxêU+íà*ë2512
×xßÀÁ/Õà+záâãä+åA>0¬æçµ3zúì+ûü'
JA[(X_X0)±1]+A<0¬+æçµ(4)ýþÿ
9:.
-
dx
xexa,Bjoy`z
!"#$%^g(1){/(x)Dxa,q`BNF(x)=
1.$%
Z=~^f{x}dxDxa,_`ab
(2)+/(x)tZr=0(2){/(x)D`abNF(x)}~(VD
(3)xa,B`B,F'(x)=f(x)
L/(x)+k2f2(x)]dx=kJ"(x)9+A2ffi(x)dxF(x)=p*'1()(p(x),(p(x)
gHCB
Ho=o=o[]
(4)ffxdx=\fxdx-\-\fxdx(cABCDa,b
JaJaJc
/(x)ab
EF)
(5)H/(x)<g(x)(<7<X</?),NNF'(x)=/M(x)M(x)(x)(x)
O/(X)PW/g(x)dx
aa2.lP
(6)Ha<Vm<f(x)<M(a<x<b),WUH“X)D`B“X)o/(x)Dxa,_`
m(b-a)<^f(x)dx<M(b-a)l
b\
N/(X)P=/(=F(b)-F(a)
(7)Ha<b,NJ/(x)iA-<+\f(x\dx
(8)\]^H/(x)D[V,_`abNcD( g{/(x)Dxa,_`abBC¡¢£¤`¥
Je[e,b],y`z
¦§¨={/(x)Dp`B
lP©ª«§¨
¬¡­)
fghij‘lO/mno/(x)Dp,q`®.¯°
b-aa1.¯°
rs]H/G)DxV,_`ab{y²¯³=°C)µ¶
(9)uv$%
_|_f{x)dx=0(/u)(1)(f)Dxa,+(·),a)`ab=
-a
af(X)dX=2ff(X)dx(/v)(2)@(a)=a,=b,¸aW/¹º»¼
|Jo
(10)½¾$%fgH/(x)Dxa,“`BNÁ(x)=Â/(//,
H/(x)CTo½¾aoÀN
C'f^dx=^{x)dx
Ã.ÄÅ^
`z
10:.
-
a<Æ(V<b,Nbf(x)dx=[Ç(V
aa
2.
HM(x),u'(x)DÈ|`abN
|u{x}v\x)dx-W(X)V(J:)/,-j
·Ju[x}dv[x}=w(^)v(x)/?-jv{x}du(x)
11:.
-
É
.r¥Ê¥
1.ËÌÍÎÏ
ÐÑIS|=+[y2(X)-Ô(x)\dx
Õ\xe[a,b]
Ã.r¥ßàïð(lÃ)
ÐÑnS2=[m3-×Ø
1.ËÌÍÎÏ
Õ\Ù2(y)&i(y)y^[c,d]Híñßày=y(x),b)[Aò>(/)
ab]
ïðS=ô6Þõ/x
ödS=+Ajoï
2.÷ÍÎÏ
HíñßàD[a,+]`
ab]
ïðs=fù'e)r+[/(úû
3.ÜãáÝßàïð
Híñßàcgx=K')(a<t</3)[40>y(t)D
v(>
[a,`ab]
ßàCïðS=jdt
3.ÜÝÞßàáâ¥
.
(
)
ßàcÜãä)1.
H
!"#$z&'
å
z=c!z=d+,-.z&/
0z(c<z<d)2"#$
(a<t</3)(p(a)^a,w(/3)=b,Æ(VDxa,æ(·
z&
S(z)4
[Cç)`abè(Véyêab,
Nßëì¥(ßàC#Ëàí=a,x=xîáâV;(z)dz
)
S=Oydx=J2.=>?&***@A***@A
aa
(1) By=y(x)(20)F#Bx=a,
x=/?!x&,-
=x&***@A
K
12:.
LM8NO0-QR8Nd
V6ny7(^x)dxV=2TTy^(y)jy
,I
=y&***@A
K
Vv=Inxy(x)dx
V.=>?&***@A***@A(8N
!8N
)
(2) Bx=x(y)(20)F#By=c,
BC=3]$x&^_.`=x&
K+
y=d!y&,-An
=y&***@WK
******@A4Sd
V=7Tx\y)dy
yJe
=X&***@A
K
qrjsJP(x)dx+C
1.AB_f4y=y(x)(a<x<b)
(tuvw{|}~x
9S=2gG)Ji+[y(x)]2dx`
78.
8)
(2)_f u
M(x)M(y)dx+M2(x)MGM=0
2.mn>?_f4r=r(e),(p<0</3)
M(x)M(y)
qr~"
(%(%)g0,M()”o)
3.AB8_f4x=x(r),y=>).
2._f
(cr<t40)dyEly£
(1)¤¥_f¦=/§_§
dx%
9S=+[>'(/)g
©2=ª,
x
w_fdydu
9
=d+X6=/(@)
._fdxdx
1._frdu
_f u"=P(X)QG)(°(>)WO)+c=In|%|+c
J/(W)-M
dx
13:.
LM8NO0-QR8N
dyz­/­2.