1 / 4
文档名称:

新课标高中数学必修三《概率》知识点.doc

格式:doc   大小:111KB   页数:4页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

新课标高中数学必修三《概率》知识点.doc

上传人:莫比乌斯 2022/10/26 文件大小:111 KB

下载得到文件列表

新课标高中数学必修三《概率》知识点.doc

相关文档

文档介绍

文档介绍:该【新课标高中数学必修三《概率》知识点 】是由【莫比乌斯】上传分享,文档一共【4】页,该文档可以免费在线阅读,需要了解更多关于【新课标高中数学必修三《概率》知识点 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。高中数学必修3(新课标)
第三章 概率(知识点)

基本概念:
(1)必然事件:一般地,在条件S下,一定会发生的事件,叫做相对于条件S的必然事件,简称必然事件;
(2)不可能事件:在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;
(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件,简称确定事件;
(4)随机事件:在条件S下可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称随机事件;
(5)确定事件与随机事件统称为事件,一般用大写字母表示A、B、C……表示.
(6)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的频率:
对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
(7)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小,接近某个常数。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率
(8)任何事件的概率是0~1之间的一个确定的数,它度量该事件发生的的可能性.
2概率的基本性质
1)一般地、对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作B⊇A或A⊆Ø,任何事件都包含不可能事件.
2)如果事件C1发生,那么事件D1一定发生,反过来也对,这时我们说这两个事件相等,记作C1=D1.
一般地,若B⊇A,且A⊇B,那么称事件A与事件B相等,记作A=B.
3)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A或事件B的并事件(或和事件),记作A∪B(或A+B).
4)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB).
5)若A∩B为不可能事件(A∩B=Ø),.
6)若A∩B为不可能事件,A∪B为必然事件,.
任何事件的概率在0~1之间,即
0≤P(A)≤1.
必然事件的概率为1,不可能事件的概率为0.
(4)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B).

基本概念:
⑴基本事件:一次试验中可能出现的每一个基本结果;
基本事件有如下特点:
任何两个基本事件是互斥的;
任何事件(除不可能事件)都可以表示成基本事件的和.
⑵古典概型的特点:
试验中所有可能出现的基本事件只有有限个;
每个基本事件出现的可能性相等.
我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。
⑶古典概型概率计算公式:一次试验的等可能基本事件共有n个,事件A包含了其中的m个基本事件,则事件A发生的概率PA=mn.
2、古典概型的概率计算公式:PA=.

基本概念:
几何概型:
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
在几何概型中,事件A的概率的计算公式如下:
PA=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)
2、互斥事件:
⑴不可能同时发生的两个事件称为互斥事件;
⑵如果事件任意两个都是互斥事件,则称事件彼此互斥.
⑶如果事件A,B互斥,那么事件A+B发生的概率,等于事件A,B发生的概率的和,
即:
⑷如果事件彼此互斥,则有:
⑸对立事件:两个互斥事件中必有一个要发生,则称这两个事件为对立事件.
①事件的对立事件记作
②对立事件一定是互斥事件,互斥事件未必是对立事件.
3、几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.