文档介绍:该【初三数字知识点归纳之代数式 】是由【莫比乌斯】上传分享,文档一共【4】页,该文档可以免费在线阅读,需要了解更多关于【初三数字知识点归纳之代数式 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。初三数字知识点归纳之代数式
除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初三数字知识点归纳之代数式,希望对大家的学习有一定帮助。
一、重要概念
分类:
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,
=x,=│x│等。
区别与联系:①从位置上看;②从表示的意义上看
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。
⑴正数a的正的平方根([a0-与平方根的区别]);
⑵算术平方根与绝对值
①联系:都是非负数,=│a│
②区别:│a│中,a为一切实数;中,a为非负数。
、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
⑴(-幂,乘方运算)
①a0时,②a0时,0(n是偶数),0(n是奇数)
⑵零指数:=1(a0)
负整指数:=1/(a0,p是正整数)
二、运算定律、性质、法则
、减、乘、除、乘方、开方法则
⑴基本性质:=(m0)
⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
(去括号、添括号法则)
:①o=;②③=;④=;⑤
技巧:
:⑴单⑵单⑶多多。
:(正、逆用)
(a+b)(a-b)=
(ab)=
:⑴单⑵多单。
:⑴定义;⑵方法:;;;;。
:=;;(a0);(a0)(正用、逆用)
:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.;B.;C..
:(110,n是整数=
三、应用举例(略)
四、数式综合运算(略)
小编为大家整理的初三数字知识点归纳之代数式相关内容大家一定要牢记,以便不断提高自己的数学成绩,祝大家学习愉快!