1 / 15
文档名称:

平面向量知识点归纳.doc

格式:doc   大小:825KB   页数:15页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

平面向量知识点归纳.doc

上传人:莫比乌斯 2022/10/27 文件大小:825 KB

下载得到文件列表

平面向量知识点归纳.doc

相关文档

文档介绍

文档介绍:该【平面向量知识点归纳 】是由【莫比乌斯】上传分享,文档一共【15】页,该文档可以免费在线阅读,需要了解更多关于【平面向量知识点归纳 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。平面向量

16、向量:既有大小,:只有大小,没有方向的量.
有向线段的三要素:起点、方向、:长度为的向量.
单位向量:长度等于个单位的向量.
平行向量(共线向量):.
相等向量:长度相等且方向相同的向量.
17、向量加法运算:
⑴三角形法则的特点:首尾相连.
⑵平行四边形法则的特点:共起点.
⑶三角形不等式:.
⑷运算性质:①交换律:;
②结合律:;③.
⑸坐标运算:设,,则.
18、向量减法运算:
⑴三角形法则的特点:共起点,连终点,方向指向被减向量.
⑵坐标运算:设,,则.
设、两点的坐标分别为,,则.
19、向量数乘运算:
⑴实数与向量的积是一个向量的运算叫做向量的数乘,记作.
①;
②当时,的方向与的方向相同;当时,的方向与的方向相反;当时,.
⑵运算律:①;②;③.
⑶坐标运算:设,则.
20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使.
设,,其中,则当且仅当时,向量、共线.

21、平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使.(不共线的向量、作为这一平面内所有向量的一组基底)
22、分点坐标公式:设点是线段上的一点,、的坐标分别是,,当时,点的坐标是.(当

23、平面向量的数量积(两个向量的数量积等于它们对应坐标的乘积的和。):
⑴.零向量与任一向量的数量积为.
⑵性质:设和都是非零向量,则①.②当与同向时,;当与反向时,;或.③.
⑶运算律:①;②;③.
⑷坐标运算:设两个非零向量,,则.
若,则,,,则.
设、都是非零向量,,,是与的夹角,则.
知识链接:空间向量
,求值的应用进行总结归纳.
1、直线的方向向量和平面的法向量
⑴.直线的方向向量:
若A、B是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是直线的方向向量.
⑵.平面的法向量:
若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果
,那么向量叫做平面的法向量.
⑶.平面的法向量的求法(待定系数法):
①建立适当的坐标系.
②设平面的法向量为.
③求出平面内两个不共线向量的坐标.
④根据法向量定义建立方程组.
⑤解方程组,取其中一组解,即得平面的法向量.
(如图)
用向量方法判定空间中的平行关系
⑴线线平行
设直线的方向向量分别是,则要证明∥,只需证明∥,即.
即:两直线平行或重合两直线的方向向量共线。
⑵线面平行
①(法一)设直线的方向向量是,平面的法向量是,则要证明∥,只需证明,即.
即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外
②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.
⑶面面平行
若平面的法向量为,平面的法向量为,要证∥,只需证∥,即证.
即:两平面平行或重合两平面的法向量共线。
3、用向量方法判定空间的垂直关系
⑴线线垂直
设直线的方向向量分别是,则要证明,只需证明,即.
即:两直线垂直两直线的方向向量垂直。
⑵线面垂直
①(法一)设直线的方向向量是,平面的法向量是,则要证明,只需证明∥,即.
②(法二)设直线的方向向量是,平面内的两个相交向量分别为,若
即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直。
⑶面面垂直
若平面的法向量为,平面的法向量为,要证,只需证,即证.
即:两平面垂直两平面的法向量垂直。
4、利用向量求空间角
⑴求异面直线所成的角
已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,

⑵求直线和平面所成的角
①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角
②求法:设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为, 则为的余角或的补角
:
⑶求二面角
①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面
二面角的平面角是指在二面角的棱上任取一点O,分别在两个半平面内作射线,则为二面角的平面角.
如图:
O
A
B
O
A
B
l
②求法:设二面角的两个半平面的法向量分别为,再设的夹角为,二面角的平面角为,则二面角为的夹角或其补角
根据具体图形确定是锐角或是钝角:
◆如果是锐角,则,
即;
如果是钝角,则,
即.
5、利用法向量求空间距离
⑴点Q到直线距离
若Q为直线外的一点,在直线上,为直线的方向向量,=,则点Q到直线距离为
⑵点A到平面的距离
若点P为平面外一点,点M为平面内任一点,
平面的法向量为,则P到平面的距离就等于在法向量方向上的投影的绝对值.

⑶直线与平面之间的距离
当一条直线和一个平面平行时,直线上的各点到平面的距离相等。由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离。

⑷两平行平面之间的距离
利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离。

⑸异面直线间的距离
设向量与两异面直线都垂直,则两异面直线间的距离就是在向量方向上投影的绝对值。

6、三垂线定理及其逆定理
⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直
推理模式:
概括为:垂直于射影就垂直于斜线.
⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直
推理模式:
概括为:垂直于斜线就垂直于射影.
7、三余弦定理
设AC是平面内的任一条直线,AD是的一条斜线AB在内的射影,且BD⊥AD,(AD)所成的角为,AD与AC所成的角为,.
8、面积射影定理
已知平面内一个多边形的面积为,它在平面内的射影图形的面积为,平面与平面所成的二面角的大小为锐二面角,则
9、一个结论
长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则有.
(立体几何中长方体对角线长的公式是其特例).
基础练****br/>一选择题
,点O是正六边形ABCDEF的中心,则以图中点A,B,C,D,E,F,O中的任意一点为起点,与起点不同的另一点为终点的所有向量中,除向量外,与向量共线的向量共有( )


解析:,,,,,,,,共9个,故选D.
,e2,且k(e1+e2)∥(e1+ke2),则实数k的值为( )
.-1C.±
答案:A
,e2,给出下列各组向量:
①a=2e1,b=e1+e2;②a=2e1-e2,b=-e1+e2;
③a=e1+e2,b=-2e1-2e2;④a=e1+e2,b=e1-e2.
其中共线的向量组共有( )

答案:B
、F分别为四边形ABCD的边CD、BC边上的中点,设=a,=b,则=( )
A.(a+b)B.-(a+b)
C.(a-b)D.(b-a)
答案:B
( )
①(-7)×6a=-42a;②a-2b+(2a+2b)=3a;
③a+b-(a+b)=0.

解析:①对,②对,③错,因为a+b-(a+b)=0.
答案:C
-+所得结果是( )
A. .
答案:C
△ABC中,||=||=||=1,则|-|的值为( )

答案:B
∥b,且|a|>|b|>0,则向量a+b的方向( )




答案:A
,对角线AC与BD交于点O,+=λ,则λ=________.
答案:2
(+)+(+)+等于( )
.
解析:(+)+(+)+=(+)+(+)+=++=.故选C.
答案:C
、e2是平面α内所有向量的一组基底,那么( )
、λ2使λ1e1+λ2e2=0,则λ1=λ2=0
=λ1e1+λ2e2,这里λ1、λ2是实数
、λ2,λ1e1+λ2e2不一定在平面α内
,使a=λ1e1+λ2e2的实数λ1、λ2有无数对
答案:A
+4e2=a,2e1+3e2=b,其中a,b为已知向量,则e1=________,e2=________.
答案:e1=3a-4b e2=-2a+3b
,e2是平面内一组基底,如果=3e1-2e2,=4e1+e2,=8e1-9e2,则共线的三点是( )
、B、、C、D
、B、、C、D
答案:C
,e2是平面内所有向量的一组基底,则下面四组向量中,不能作为基底的是( )
+e2和e1-e2
-2e2和4e2-6e1
+2e2和e2+2e1
+e2
解析:∵4e2-6e1=-2(3e1-2e2),
∴3e1-2e2与4e2-6e1共线,故选B.
答案:B
=,且点A的坐标为(1,2),则点B的坐标为( )
A.(1,1) B.
.
答案:C
(O为原点),=(2,0),=(3,1),则OC等于( )
A.(1,1)B.(1,-1)
C.(-1,-1)D.(-1,1)
解析:==-=(3,1)-(2,0)=(1,1),故选A.
答案:A