1 / 27
文档名称:

电力知识点总结总结.doc

格式:doc   大小:149KB   页数:27页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

电力知识点总结总结.doc

上传人:莫比乌斯 2022/10/27 文件大小:149 KB

下载得到文件列表

电力知识点总结总结.doc

相关文档

文档介绍

文档介绍:该【电力知识点总结总结 】是由【莫比乌斯】上传分享,文档一共【27】页,该文档可以免费在线阅读,需要了解更多关于【电力知识点总结总结 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。电力系统:
电力系统中,发电厂在任何时刻发出的功率必须等于该时刻用电设备所需的功率、输送和分配环节中的功率损失之和。
额定频率为50Hz,正常运行允许的偏移为。供电频率的允许偏差规定,,,在电力系统非正常状态下,供电频率允许偏差可以超过。用户供电电压允许偏移对于35kV及以上电压等级为额定的,对于10kV及以下电压计为,低压照明负荷:+5%~-10%,农村电网:。为保证电压质量,对电压正弦波形畸变率也有限制,波形畸变率是各次谐波有效值平方和的方根值对基波有效值的百分比,对于供电电压不超过4%,%。线路平均额定电压一般高出线路额定电压的5%。
中性点不接地系统,在发生单相接地故障时,单相接地的电容电流为正常运行时每相电容电流的三倍。
一般是220kV为2分裂,500kV为4分裂,西北电网750kV为6分裂,1000kV为8分裂。
电晕临界电压与两个因素有关,一个是相间距离,一个是导线半径r,由于增大相间距离会增大杆塔距离,从而大大增加线路的造价,所以临界电压可以认为与导线半径成正比,所以增大导线半径是防止和减小电晕算好的有效方法。对220kV以下线路通常按避免电晕损耗的条件选择导线半径;对220kV以上的线路,则考虑采用分裂导线来增大每相的等值半径。
短线路通常指长度100km以下的架空线路,可以不考虑导纳支路的影响(两横);中等长度线路通常指在100km~300km之间的架空线路和长度不超过100km的电缆线路,可以忽略分布参数的影响,用集中参数电路表示,用派型和T型等值电路表示,为减小节点数多采用派型;长线路是指长度超过300km的架空线路和长度超过100km的电缆线路。长线路必须考虑分布参数的影响。
波阻抗无有功功率损耗,当符合阻抗为波阻抗时,该符合消耗的功率为自然功率;线路输送功率等于自然功率时,线路末端电压等于首段电压;大于时,小于首段电压;小于时,大于首段电压。由于高压架空线的波阻抗呈电容性,自然功率也略显电容性,提高输电额定电压和减小波阻抗都可以增大自然功率。采用分裂导线可以减小线路电感增大线路电容,是减小波阻抗的有效办法。
变压器铭牌上的额定容量是指容量最大的一个绕组的容量,也就是高压绕组的容量。变压器设计按照电流密度相等选择各绕组导线截面积的原则。三绕组自耦变压器的第三绕组(低压侧绕组)总是接成三角形,以消除由于铁芯饱和引起的三次谐波,并且它的容量比额定的容量小。
应用桃形和T型等值电路模型是,所有参数和变量都要作电压级归算,应用等值变压器模型时,所有参数和变量可不进行归算。
在纯电抗元件中,电压降落的纵分量是因为传送无功功率而产生,电压降落的横分量则因为传送有功功率产生。
有功功率的最大值称为功率极限,功率极限的主要部分与两端电压幅值的乘积成正比,与首末端之间的转移阻抗成反比。线路本身的功率极限同线路的长度密切相关,1/4波长和3/4波长无损线的功率极限最小,并等于自然功率。1/2波长无损线的功率极限趋于无穷大。
单端供电系统中,当给定电源电压和系统阻抗时,引起受端功率和电压变化的唯一变量是负荷的等值阻抗。负荷节点从空载开始,随着负荷等值阻抗的减小,受端功率先增后减,而电压则始终单调下调,这是单端供电网络固有的功率传输特性。
变压器的电阻电能损耗(铜耗)计算与线路电能损耗计算相同,这部分成为变动损耗(因为导线上的电流大小与负载有关);电导的电能损耗(铁耗)近似等于变压器空载损耗与变压器运行小时数的成绩,这部分可以认为是不变损耗。变压器中无功功率损耗远大于有功功率损耗,变压器中的电压降落的纵分量主要取决于变压器电抗。
未装设无功补偿装置的降压变电站的低压母线,在潮流计算中属于PQ节点;装有无功补偿装置,并可维持母线电压恒定的降压变电站的低压母线,在潮流计算中属于PV节点。通常变电所都是PQ节点,网络中还有一类既不接发电机又没有负荷的联络节点,(亦称浮游节点),也当作PQ节点,但是其PQ节点为零;系统中PQ节点最多,PV节点数目很少,系统中只有一个并且只有一个的节点是平衡节点。当发电机装有自动励磁装置,并按照最优分配原则确定有功出力发电时,发电机的电压母线属于PV节点;如果某一PV节点电源输出的无功功率越线,则超过上限时按上限输出无功功率,低于下限时按下限输出无功功率,此时电源无功出力为定值,所以是PV节点变为PQ节点;
中枢点:(1)区域性水、火电厂的高压母线;(2)枢纽变电所的二次母线;(3)有大量地方负荷的发电机电压母线。这些供电点成为中枢点;
有功功率的最优分配包括有功电源的最优组合、有功负荷的最优分配两个方面。有功功率电源的最优组合指的是系统中发电设备或发电厂的合理组合,也就是通常所谓的合理开停,大体上包括三个部分:机组的最优组合顺序、机组的最优组合数量和机组的最优开停时间;有功负荷的最优分配是指系统的有功功率负荷在各个正在运行的发电设备和发电厂之间的合理分配。其目的是在满足功率平衡和保障电能质量的前提下,使电力系统的能源消耗最小。
频率变动对发电厂和系统本身的影响:火力发电厂影响锅炉的正常运行,低频率运行将增加汽轮机叶片所受的应力,引起叶片的共振,缩短叶片的寿命();低频时,会致使发电机定转子的温升增加,为了不超越温升极限,降低发电机的所发功率;低频运行时,由于磁通密度的增大,变压器的铁芯损耗和励磁电流损耗,为了不超越温升限额,降低变压器的负荷;频率降低时,系统的无功功率负荷增大,而无功功率负荷的增大将引起系统电压水平的下降。
系统电源容量等于系统中可运行机组的可发容量之和,又等于系统发电负荷和系统备用容量之和;负荷备用(%2~%5)属于热备用,事故备用(%5~%10)既有热备用又有冷备用,而检修备用和国民经济备用都是冷备用。无功的备用容量一般取最大无功功率负荷的7%~8%。
发电机输出的电磁功率与系统的有功功率负荷(包括各种用电设备所需的有功功率和网络的有功功率损耗)相等。由于电能不能存储,负荷功率的任何变化都立即引起发电机的输出功率的相应变化,且这种变化是瞬时出现的。
频率的一次调整:称为系统的单位调节功率。表示电力系统负荷发生变化时,在原动机调速器和负荷的调节效应共同作用下系统频率下降或上升的多少。越大,同样负荷波动下,系统频率波动越小。但,负荷的单位调节功率是无法调整的,所以增大的方法只有增大发电机的单位调节功率,为保证调速系统本身运行的稳定性,发电机不能采用过大的单位调节功率,所以为了增大系统单位调节功率应使尽可能多的发电机参与一次调频。满载的发电机不能参加调频,其单位调节功率为零。全系统有调整能力的发电机组都参加频率的一次调整,二次调频基本包含一次调频,非调频电厂只参加一次调整,而不参加频率的二次调整。
电力系统中的无功电源不消耗一次能源,而影响有功损耗;有功电源则需要消耗一次能源。
电力系统频率下降原因为系统负荷增加,负荷增加导致电压降低,电压降低是因为消耗大量无功,也就是无功需求量增大;系统频率增高时,发电机电势增高,电压增大,电网中的损耗随之减小,电压增大,说明无功功率充足,所以对无功需求量减小;当电力系统中由于有功和无功不足导致频率和电压都偏低时,应该首先解决有功功率平衡的问题,因为频率的提高能减小无功的缺额,这对于调整电压是有利的。如果先去提高电压,就会扩大有功的缺额,导致频率更加下降。
调整用户端电压V可以采取以下措施:(1)调节励磁电流以改变发电机端电压;(2)适当调节变压器变比;(3)改变线路参数;(4)改变无功功率分布。
借无功补偿设备调压:(1)串联电容补偿调压,其原理是通过减小系统电抗,从而减小电压损耗达到调压的目的。串联电容调压还可以起到调高线路输电能力和系统稳定性的效果。(2)并联无功补偿设备调压,其原理是通过改变线路中传输的无功功率来调压。常用的无功补偿装置有电容器、静止无功补偿器、电抗器等。
调压措施:(1)首先考虑发电机调压,发电机调压是发电机直接供电的小系统的主要调压手段;(2)无功电源充足,局部电压不足时,改变电压器变比调压(不产生无功,只是改变无功的分布,且前提是无功必须充足,如果不足需要用无功电源进行调节);(3)当无功不足时,无功电源调压;(4)并联电抗器主要吸收超高压、特高压输电线路的过剩无功。
逆调压常用无功补偿装置调节,顺调压通过改变变压器变比调节。三种调压方式实现难度对比:逆调压>常调压>顺调压;借助发电机端电压进行调压是一种典型的逆调压,因为改变了无功。
无穷大功率电源指电势源有恒定幅值和恒定频率,不随线路负荷的改变而改变。无限大容量母线:假设受端系统的容量相对于发电机很大,发电机输出任何功率时,受端导线的电压频率不变。
同步发电的定子绕组的自感互感周期都为π,定子与转子之间的互感为2π,凸极机定子绕组的自感系数和互感系数都随着转子的转动而变化,而隐极机由于d轴与q轴对称,所以其定子绕组的自感系数与互感系数为常数。定子绕组间的互感系数为负。
abc坐标系统的发电机基本方程是时变系数微分方程,直接求解困难,可以通过park变换将定子abc三相绕组用dq0三个绕组磁等效替代,将abc系统发电机变系数微分方程变换为方便求解的dq0系统的常系数微分方程。Park变换的规律:若为正序交流为直流,=0;若为直流为交流,;若
为负序交流为2倍频交流,=0;若为2倍频交流为交流,=0;
无阻尼绕组同步电机突然短路时,定子电流将包含基频分量、倍频分量和直流分量(非周期分量),其中倍频电流和非周期电流都是为了维持磁链初值守恒而出现的,都属于自由分量。有阻尼绕组电机突然短路时,定子电流中包含有基频分量、直流分量和倍频分量,转子各绕组中也要出现自由分量和基频自由电流。无阻尼和有阻尼定转子中出现的电流情况相同。周期分量和倍频分量衰减到稳态值,而非周期分量衰减到零。要看一下,不一定对
同步调相机只发出或者吸收无功功率,且经常工作在过励磁状态,励磁电流比较大,从而发出无功。
发电机只存在正序电动势,不存在负序和零序电动势。相电压中可以存在零序分量,线电压中不存在零序电压分量。中性点接地阻抗不出现在正序和负序的网络中。三相输电线路流过零序电流时的磁场分布不同于正序和负序,正序和负序情况下,互磁通起去磁作用,而在零序电流经过时,互磁通起助磁作用,所以输电线路的零序电抗大于正负序电抗。三相导线之间的几何平均距离越大,正序电抗越大,零序电抗越小。对于双回供电线路,通过换位可以消除两回路之间正负序电抗的影响,其正负序仍可按单回路确定,而对于零序电抗,由于三相线路的零序电流相位相同,起助磁作用,所以同杆双回输电线路每回每相的零序电抗大于单回路。
利用对称分量法分析计算电力系统不对称故障时,应选特殊相作为分析计算的基本相,且该法仅适用于线性电力系统不对称故障的分析。对称分量法实际上是迭加原理的应用,所以不能用在非线性电路分析中。
当系统的节点数为n,PQ节点数为m时,用极坐标表示的潮流计算方程式中有功和无功功率误差方程式为n-1+m个,而用直角坐标方法,方程个数为2(n-1)个。在潮流计算中,对每个节点来说都有6个变量,包括发电机发出的有功和无功,负荷需要的有功和无功以及节点电压的幅值和相位。
单相接地短路时,非故障相电压的绝对值总是相等,其相角差与零序阻抗和负序阻抗的比值有关。当零序阻抗等于零时,相当于短路发生在直接接地的中性点附近,此时零序电压为零,非故障相电压正好反向,其相角差刚好为180度,相电压的绝对值为;当零序阻抗为无穷大时,即为不接地系统,单相短路电流为零,非故障相上升为线电压,其绝对值为,非故障相夹角为60度。当零序阻抗等于负序阻抗时,非故障相点电压等于故障前正常电压,夹角120度。
两相短路时,两相短路电流为正序电流的倍;短路点非故障相电压为正序电压的两倍,非故障相电压等于正序电压,且与非故障相方向相反。
网络中各点电压的不对称程度主要由负序分量决定,负序分量越大,电压越不对称;单相短路时电压的不对称程度要比其他类型的不对称时小一些。不管何种不对称短路,短路点的电压最不对称。
串联电容器能够缩短电气距离、提高系统稳定性和输电能力。
将电力系统的中性点接地的方式称为工作接地。
~。
变电所低压侧负荷和变压器损耗之和称为运算负荷。
输电线路的零序电抗一般等于3~5倍的负序电抗。
在电力系统中,正阻尼是减幅振荡,负阻尼是增幅振荡。在电力系统稳态分析时,用电设备的数学模型通常采用的是恒功率模型。
电压偏移的定义是末端或首端与额定电压差值与额定电压之比
不考虑励磁调节作用时,同步发电机母线三相短路达到稳态是,短路电流的大小为。
电力系统中的各序分量具有独立性,电力元件的各序电抗与短路类型无关(是本身的固有特点)。
三相三柱式变压器正序励磁阻抗等于负序励磁阻抗大于零序励磁阻抗;三相组式变压器各序励磁阻抗正负零都不相等。
导纳矩阵的对角关系物理意义:其他节点都接地,在i上加单位电压时,从节点流向网络的注入电流。
发电机端发生突然三相短路时,三相短路电流不对称(含有非周期分量),三相短路电流周期分量对称。