1 / 8
文档名称:

高中数学必修4知识点总结第一章三角函数.doc

格式:doc   大小:1,136KB   页数:8页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

高中数学必修4知识点总结第一章三角函数.doc

上传人:莫比乌斯 2022/10/27 文件大小:1.11 MB

下载得到文件列表

高中数学必修4知识点总结第一章三角函数.doc

相关文档

文档介绍

文档介绍:该【高中数学必修4知识点总结第一章三角函数 】是由【莫比乌斯】上传分享,文档一共【8】页,该文档可以免费在线阅读,需要了解更多关于【高中数学必修4知识点总结第一章三角函数 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。三角函数
一、基础知识点总结
2、角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第几象限角.
第一象限角的集合为
第二象限角的集合为
第三象限角的集合为
第四象限角的集合为
终边在轴上的角的集合为
终边在轴上的角的集合为
终边在坐标轴上的角的集合为
3、与角终边相同的角的集合为
4、长度等于半径长的弧所对的圆心角叫做弧度.
5、半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是.
6、弧度制与角度制的换算公式:,,.
7、若扇形的圆心角为,半径为,弧长为,周长为,面积为,则,,.
Pv
x
y
A
O
M
T
8、设是一个任意大小的角,的终边上任意一点的坐标是,它与原点的距离是,则,,.
9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,
第三象限正切为正,第四象限余弦为正.
10、三角函数线:,,.
11、角三角函数的基本关系:
;.
12、函数的诱导公式:
,,.
,,.
,,.
,,.
口诀:函数名称不变,符号看象限.
,.,.
口诀:正弦与余弦互换,符号看象限.
二、三角函数伸缩平移变换
,,由引起的变换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由引起的变换称上下平移变换,它们都是平移变换.
既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移.
变换方法如下:先平移后伸缩
的图象得的图象
得的图象
得的图象
得的图象.
先伸缩后平移
的图象得的图象
得的图象
得的图象得的图象.
例1 将的图象怎样变换得到函数的图象.
解:(方法一)①把的图象沿轴向左平移个单位长度,得的图象;②将所得图象的横坐标缩小到原来的,得的图象;③将所得图象的纵坐标伸长到原来的2倍,得的图象;④最后把所得图象沿轴向上平移1个单位长度得到的图象.
(方法二)①把的图象的纵坐标伸长到原来的2倍,得的图象;②将所得图象的横坐标缩小到原来的,得的图象;③将所得图象沿轴向左平移个单位长度得的图象;④最后把图象沿轴向上平移1个单位长度得到的图象.
说明:,把的图象的横坐标缩小到原来的,得到的函数图象的解析式是而不是.
对于复杂的变换,可引进参数求解.
例2 将的图象怎样变换得到函数的图象.
分析:应先通过诱导公式化为同名三角函数.
解:,
在中以代,有.
根据题意,有,得.
所以将的图象向左平移个单位长度可得到函数的图象.
练习
1、要得到函数y=2cos(x+)sin(﹣x)﹣1的图象,只需将函数y=sin2x+cos2x的图象( )
A、向左平移个单位 B、向右平移个单位
C、向右平移个单位 D、向左平移个单位
2、将函数y=3sin(2x+θ)的图象F1按向量平移得到图象F2,若图象F2关于直线对称,则θ的一个可能取值是( )
A、 B、C、 D、
3、将函数的图象按向量平移,得到y=f(x)的图象,则f(x)=( )
A、B、
C、 D、sin(2x)+3
4、把函数y=(cos3x﹣sin3x)的图象适当变化就可以得到y=﹣sin3x的图象,这个变化可以是( )
A、沿x轴方向向右平移 B、沿x轴方向向左平移
C、沿x轴方向向右平移 D、沿x轴方向向左平移
5、为了得到函数y=的图象,可以将函数y=sin2x的图象( )
A、向右平移个单位长度 B、向右平移个单位长度
C、向左平移个单位长度 D、向左平移个单位长度
6、把函数y=sinx的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),然后把图象向左平移个单位,则所得到图象对应的函数解析式为( )
A、 B、
C、 D、
1、D2、A3、、、、D
14、函数的性质:
①振幅:;②周期:;③频率:;
;④相位:;⑤初相:.
函数,当时,取得最小值为;当时,取得最大值为,则
,,.
15、正弦函数、余弦函数和正切函数的图象与性质:




图象
定义域
值域
最值
当时,;当
时,.
当时,
;当
时,.
既无最大值也无最小值
周期性
奇偶性
奇函数
偶函数
奇函数
单调性

上是增函数;在
在上是增函数;在
上是减函数.

上是增函数.
上是减函数.
对称性
对称中心
对称轴
对称中心
对称轴
对称中心
无对称轴
补充知识点:三角恒等变换
24、两角和与差的正弦、余弦和正切公式:
⑴;⑵;
⑶;⑷;
⑸();
⑹().
25、二倍角的正弦、余弦和正切公式:
⑴.

升幂公式
降幂公式,

第二章平面向量
16、向量:既有大小,:只有大小,没有方向的量.
有向线段的三要素:起点、方向、:长度为的向量.
单位向量:长度等于个单位的向量.
平行向量(共线向量):.
相等向量:长度相等且方向相同的向量.
17、向量加法运算:
⑴三角形法则的特点:首尾相连.
⑵平行四边形法则的特点:共起点.
⑶三角形不等式:.
⑷运算性质:①交换律:;
②结合律:;③.
⑸坐标运算:设,,则.
18、向量减法运算:
⑴三角形法则的特点:共起点,连终点,方向指向被减向量.
⑵坐标运算:设,,则.
设、两点的坐标分别为,,则.
19、向量数乘运算:
⑴实数与向量的积是一个向量的运算叫做向量的数乘,记作.
①;
②当时,的方向与的方向相同;当时,的方向与的方向相反;当时,.
⑵运算律:①;②;③.
⑶坐标运算:设,则.
20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使.
设,,其中,则当且仅当时,向量、共线.
21、平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使.(不共线的向量、作为这一平面内所有向量的一组基底)
22、分点坐标公式:设点是线段上的一点,、的坐标分别是,,当时,点的坐标是.(当
23、平面向量的数量积:
⑴.零向量与任一向量的数量积为.
⑵性质:设和都是非零向量,则①.②当与同向时,;当与反向时,;或.③.
⑶运算律:①;②;③.
⑷坐标运算:设两个非零向量,,则.
若,则,,,则.
设、都是非零向量,,,是与的夹角,则.