1 / 7
文档名称:

高中数学数列知识点整理.docx

格式:docx   大小:296KB   页数:7页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

高中数学数列知识点整理.docx

上传人:莫比乌斯 2022/10/27 文件大小:296 KB

下载得到文件列表

高中数学数列知识点整理.docx

相关文档

文档介绍

文档介绍:该【高中数学数列知识点整理 】是由【莫比乌斯】上传分享,文档一共【7】页,该文档可以免费在线阅读,需要了解更多关于【高中数学数列知识点整理 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。数列
1、数列中与之间的关系:
注意通项能否合并。
2、等差数列:
⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即-=d,(n≥2,n∈N),
那么这个数列就叫做等差数列。
⑵等差中项:若三数成等差数列
⑶通项公式:

⑷前项和公式:
⑸常用性质:
①若,则;
②下标为等差数列的项,仍组成等差数列;
③数列(为常数)仍为等差数列;
④若、是等差数列,则、(、是非零常数)、、,…也成等差数列。
⑤单调性:的公差为,则:
ⅰ)为递增数列;
ⅱ)为递减数列;
ⅲ)为常数列;
⑥数列{}为等差数列(p,q是常数)
⑦若等差数列的前项和,则、、…是等差数列。
3、等比数列
⑴定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
⑵等比中项:若三数成等比数列(同号)。反之不一定成立。
⑶通项公式:
⑷前项和公式:
⑸常用性质
①若,则;
②为等比数列,公比为(下标成等差数列,则对应的项成等比数列)
③数列(为不等于零的常数)仍是公比为的等比数列;正项等比数列;则是公差为的等差数列;
④若是等比数列,则
是等比数列,公比依次是
⑤单调性:
为递增数列;为递减数列;
为常数列;
为摆动数列;
⑥既是等差数列又是等比数列的数列是常数列。
⑦若等比数列的前项和,则、、…是等比数列.
4、非等差、等比数列通项公式的求法
类型Ⅰ观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项。
类型Ⅱ公式法:若已知数列的前项和与的关系,求数列的通项可用公式构造两式作差求解。
用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即和合为一个表达,(要先分和两种情况分别进行运算,然后验证能否统一)。
类型Ⅲ累加法:
形如型的递推数列(其中是关于的函数)可构造:
将上述个式子两边分别相加,可得:
①若是关于的一次函数,累加后可转化为等差数列求和;
②若是关于的指数函数,累加后可转化为等比数列求和;
③若是关于的二次函数,累加后可分组求和;
④若是关于的分式函数,累加后可裂项求和.
类型Ⅳ累乘法:
形如型的递推数列(其中是关于的函数)可构造:
将上述个式子两边分别相乘,可得:
有时若不能直接用,可变形成这种形式,然后用这种方法求解。
类型Ⅴ构造数列法:
㈠形如(其中均为常数且)型的递推式:
(1)若时,数列{}为等差数列;
(2)若时,数列{}为等比数列;
(3)若且时,数列{}为线性递推数列,:
法一:设,展开移项整理得,与题设
比较系数(待定系数法)得,即构成以为首项,
法二:由得两式相减并整理得即构成以为首项,Ⅲ(累加法)便可求出
㈡形如型的递推式:
⑴当为一次函数类型(即等差数列)时:
法一:设,通过待定系数法确定的值,转化成以为首项,以为公比的等比数列,再利用等比数列的通项公式求出的通项整理可得
法二:当的公差为时,由递推式得:,两式相减得:,令得:转化为类型Ⅴ㈠求出,再用类型Ⅲ(累加法)便可求出
⑵当为指数函数类型(即等比数列)时:
法一:设,通过待定系数法确定的值,转化成以为首项,以为公比的等比数列,再利用等比数列的通项公式求出的通项整理可得
法二:当的公比为时,由递推式得:——①,,两边同时乘以得——②,由①②两式相
减得,即,在转化为类型Ⅴ㈠便可求出
法三:递推公式为(其中p,q均为常数)或(其中p,q,r均为常数)时,要先在原递推公式两边同时除以,得:,引入辅助数列(其中),得:再应用类型Ⅴ㈠的方法解决。
⑶当为任意数列时,可用通法:
在两边同时除以可得到,令,则,在转化为类型Ⅲ(累加法),求出之后得.
类型Ⅵ对数变换法:
形如型的递推式:
在原递推式两边取对数得,令得:,化归为型,求出之后得(注意:底数不一定要取10,可根据题意选择)。
类型Ⅶ倒数变换法:
形如(为常数且)的递推式:两边同除于,转化为形式,化归为型求出的表达式,再求;
还有形如的递推式,也可采用取倒数方法转化成形式,化归为型求出的表达式,再求.
类型Ⅷ形如型的递推式:
用待定系数法,化为特殊数列的形式求解。方法为:设,比较系数得,可解得,于是
是公比为的等比数列,这样就化归为型。
总之,求数列通项公式可根据数列特点采用以上不同方法求解,对不能转化为以上方法求解的数列,可用归纳、猜想、证明方法求出数列通项公式
5、非等差、等比数列前项和公式的求法
⑴错位相减法
①若数列为等差数列,数列为等比数列,则数列的求和就要采用此法.
②将数列的每一项分别乘以的公比,然后在错位相减,进而可得到数列的前项和.
此法是在推导等比数列的前项和公式时所用的方法.
⑵裂项相消法
一般地,当数列的通项时,往往可将变成两项的差,采用裂项相消法求和.
可用待定系数法进行裂项:
设,通分整理后与原式相比较,根据对应项系数相等得,从而可得
常见的拆项公式有:





⑶分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,:①找通向项公式②由通项公式确定如何分组.
⑷倒序相加法
如果一个数列,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。特征:
⑸记住常见数列的前项和:


最近更新

2018年饭店工作计划与2018年饲料销售业务员工.. 11页

2018幼儿园中班月计划例文与2018幼儿园中班月.. 6页

2018幼儿园小班保教工作计划与2018幼儿园小班.. 10页

2018幼儿园教师个人总结2与2018幼儿园教师个人.. 10页

2018建筑行业年终工作总结与2018建筑设计工作.. 10页

2018技术人员工作计划范本与2018技术员个人工.. 6页

2018春幼儿园卫生保健工作计划 4页

2018最新经典的植树节演讲稿与2018最新联欢会.. 7页

2018版幼儿园中班保育员开学模拟考试试题试题.. 10页

2018版幼儿园学前班保育员五级职业水平考试试.. 12页

2018酒吧消防安全工作计划范文与2018酒店保安.. 9页

网络推广方案 7页

AR虚拟现实交互功能嵌入二零二五创新成果表彰.. 25页

合同范本之出版合同篇图书出版合同 27页

乡村振兴背景下道德讲堂与农耕文化融合——20.. 23页

二零二五基层社区治理 22页

二零二五年文化馆数字展厅诗词歌赋动态投影模.. 24页

二零二五新品战略揭幕会暗黑科技感动态转场PP.. 21页

汉普仪奥氏仪PH的操作规程及原理 7页

汽车被动安全性分析ppt 73页

致橡树说课课件公开课一等奖优质课大赛微课获.. 39页

端午节的通讯稿 7页

食品安全培训测试题及答案 4页

安全管理员安全培训考试题附完整答案(易错题).. 13页

2022-2023学年人教版数学六年级上册认识扇形练.. 7页

2023年广东中考语文真题试卷及答案解析 10页

尾矿库安全风险评估报告(案例) 37页

利率互换会计处理探讨 9页

城市干道铅污染的统计分析(文献综述) 13页

微生物生态毒理学ppt课件 39页