1 / 31
文档名称:

大学无机化学知识点总结.doc

格式:doc   大小:1,679KB   页数:31页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

大学无机化学知识点总结.doc

上传人:莫比乌斯 2022/10/27 文件大小:1.64 MB

下载得到文件列表

大学无机化学知识点总结.doc

文档介绍

文档介绍:该【大学无机化学知识点总结 】是由【莫比乌斯】上传分享,文档一共【31】页,该文档可以免费在线阅读,需要了解更多关于【大学无机化学知识点总结 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。无机化学,有机化学,物理化学,分析化学
无机化学
元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。
有机化学
普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。
物理化学
结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。
分析化学
化学分析、仪器和新技术分析。包括性能测定、监控、各种光谱和光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像和形貌分析方法,在线分析、活性分析、实时分析等,各种物理化学性能和生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。
无机化学
第一章:气体
第一节:理想气态方程
1、气体具有两个基本特性:扩散性和可压缩性。主要表现在:
⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。
2、理想气体方程:为气体摩尔常数,数值为=
3、只有在高温低压条件下气体才能近似看成理想气体。
第二节:气体混合物
1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。
2、Dlton分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。
3、(0℃==760mmHg=76cmHg)
第二章:热化学
第一节:热力学术语和基本概念
系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分为:
⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。
⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。
⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。
状态是系统中所有宏观性质的综合表现。描述系统状态的物理量称为状态函数。状态函数的变化量只与始终态有关,与系统状态的变化途径无关。
系统中物理性质和化学性质完全相同而与其他部分有明确界面分隔开来的任何均匀部分叫做相。相可以由纯物质或均匀混合物组成,可以是气、液、固等不同的聚集状态。
化学计量数对于反应物为负,对于生成物为正。
5、反应进度=,单位:mol
第二节:热力学第一定律
系统与环境之间由于温度差而引起的能量传递称为热。热能自动的由高温物体传向低温物体。系统的热能变化量用Q表示。若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。
系统与环境之间除热以外其他的能量传递形式,称为功,用W表示。环境对系统做功,W>O;系统对环境做功,W<0。
体积功:由于系统体积变化而与环境交换的功称为体积功。
非体积功:体积功以外的所有其他形式的功称为非体积功。
热力学能:在不考虑系统整体动能和势能的情况下,系统内所有微观粒子的全部能量之和称为热力学能,又叫内能。
气体的标准状态—纯理想气体的标准状态是指其处于标准压力下的状态,混合气体中某组分气体的标准状态是该组分气体的分压为且单独存在时的状态。
液体(固体)的标准状态—纯液体(或固体)的标准状态时指温度为T,压力为时的状态。
液体溶液中溶剂或溶质的标准状态—溶液中溶剂可近似看成纯物质的标准态。在溶液中,溶质的标准态是指压力,质量摩尔浓度,标准质量摩尔浓度,并表现出无限稀释溶液特性时溶质的(假想)状态。标准质量摩尔浓度近似等于标准物质的量浓度。即
物质B的标准摩尔生成焓(B,相态,T)是指在温度T下,由参考状态单质生成物质B()反应的标准摩尔焓变。
参考状态一般指每种物质在所讨论的温度T和标准压力时最稳定的状态。个别情况下参考状态单质并不是最稳定的,磷的参考状态是白磷(s,白),但白磷不及红磷和黑磷稳定。O2(g)、H2(g)、Br2(l)、I2(s)、Hg(l)和P4(白磷)是T=,下相应元素的最稳定单质,即其标准摩尔生成焓为零。
在任何温度下,参考状态单质的标准摩尔生成焓均为零。
物质B的标准摩尔燃烧焓(B,相态,T)是指在温度T下,物质B()完全氧化成相同温度下指定产物时的反应的标准摩尔焓变。
第四节:Hess定律
Hess定律:化学反应不管是一步或分几步完成,其总反应所放出或吸收的热总是相等的。其实质是化学反应的焓变只与始态和终态有关,而与途径无关。
焓变基本特点:
⑴某反应的(正)与其逆反应的(逆)数值相等,符号相反。即
(正)=-(逆)。
⑵始态和终态确定之后,一步反应的等于多步反应的焓变之和。
多个化学反应计量式相加(或相减),所得化学反应计量式的(T)等于原各计量式的(T)之和(或之差)。
第五节:反应热的求算
在定温定压过程中,反应的标准摩尔焓变等于产物的标准摩尔生成焓之和减去反应物的标准摩尔生成焓之和。=(总生成物)-(总反应物){如果有参考状态单质,则其标准摩尔生成焓为零}
在定温定压过程中,反应的标准摩尔焓变等于反应物的标准摩尔燃烧焓之和减去产物的标准摩尔燃烧焓之和。=(总反应物)-(总生成物){参考状态单质只适用于标准摩尔生成焓,其标准摩尔燃烧焓不为零}
第三章:化学动力学基础
第一节:反应速率
第二节:浓度对反应速率的影响—速率方程
对化学反应来说,反应速率与反应物浓度的定量关系为:,该方程称为化学反应速率定律或化学反应速率方程,式中称为反应速率系数,表示化学反应速率相对大小;,分别为反应物A和B的浓度,单位为;,分别称为A,B的反应级数;称为总反应级数。反应级数可以是零、正整数、分数,也可以是负数。零级反应得反应物浓度不影响反应速率。(反应级数不同会导致单位的不同。对于零级反应,的单位为,一级反应的单位为,二级反应的单位为,三级反应的单位为)
由实验测定反应速率方程的最简单方法—初始速率法。
在一定条件下,反应开始时的瞬时速率为初始速率,由于反应刚刚开始,逆反应和其他副反应的干扰小,能较真实的反映出反应物浓度对反应速率的影响具体操作是将反应物按不同组成配置成一系列混合物。对某一系列不同组成的混合物来说,先只改变一种反应物A的浓度。保持其他反应物浓度不变。在某一温度下反应开始进行时,记录在一定时间间隔内A的浓度变化,作出
图,确定t=0是的瞬时速率。也可以控制反应条件,是反应时间间隔足够短,这时可以把平均速率作为瞬时速率。
3、对于一级反应,其浓度与时间关系的通式为:㏑
第三节:温度对反应速率的影响—Arrhenius方程
速率系数与温度关系方程:,㏑{}=㏑{}-,㏑,实验活化能,单位为。为指前参量又称频率因子。与具有相同的量纲。与是两个经验参量,温度变化不大时视为与温度无关。
对Arrhenius方程的进一步分析:
⑴在室温下,每增加4,将使值降低80%。在室温相同或相近的情况下,活化能大的反应,其速率系数则小,反应速率较小;小的反应较大,反应速率较大。
⑵对同一反应来说,温度升高反应速率系数增大,一般每升高10℃,值将增大2~10倍。
⑶对同一反应来说,升高一定温度,在高温区,值增大倍数小;在低温区值增大倍数大。因此,对一些在较低温度下进行的反应,升高温度更有利于反应速率的提高。
⑷对于不同的反应,升高相同温度,大的反应值增大倍数大;小的反应值增大倍数小。即升高温度对进行的慢的反应将起到更明显的加速作用。
第四节:反应速率理论与反应机理简介
1、=(正)-(负)
2、由普通分子转化为活化分子所需要的能量叫做活化能
第五节:催化剂与催化作用
催化剂是指存在少量就能显著加速反应而本身最后并无损耗的物质。催化剂加快反应速率的作用被称为催化作用。
催化剂的特征:
⑴催化剂只对热力学可能发生的反应起催化作用,热力学上不可能发生的反应,催化剂对它不起作用。
⑵催化剂只改变反应途径(又称反应机理),不能改变反应的始态和终态,它同时加快了正逆反应速率,缩短了达到平衡所用的时间,并不能改变平衡状态。
⑶催化剂有选择性,不同的反应常采用不同的催化剂,即每个反应有它特有的催化剂。同种反应如果能生成多种不同的产物时,选用不同的催化剂会有利于不同种产物的生成。
⑷每种催化剂只有在特定条件下才能体现出它的活性,否则将失去活性或发生催化剂中毒。
第四章:化学平衡熵和Gibbs函数
第一节:标准平衡常数
1、平衡的组成与达成平衡的途径无关,在条件一定时,平衡的组成不随时间而变化。平衡状态是可逆反应所能达到的最大限度。平衡组成取决于开始时的系统组成。
2、对可逆反应来说,其标准平衡常数
3、两个或多个化学计量式相加(或相减)后得到的化学计量式的标准平衡常数等于原各个化学计量式的化学平衡常数的积(或商),这称为多重平衡原理。
第二节:标准平衡常数的应用
1、反应进度也常用平衡转化率来表示。反应物A的平衡转化率表达式为
2、J表示反应商。若J<则反应正向进行;若J=,则反应处于平衡状态;若J>,则反应逆向进行。
第三节:化学平衡的移动
1、浓度对化学平衡的影响:浓度虽然可以使化学平衡发生移动,但并不能改变化学平衡常数的数值,因为在一定温度下,值一定。当反应物浓度增加或产物浓度减少时,平衡正向移动;当反应物浓度减少或产物浓度增加时,平衡逆向移动。
2、压力对化学平衡的影响:综合考虑各反应物和产物分压是否改变及反应前后气体分子数是否改变。
3、温度对化学平衡都影响:温度变化引起标准平衡常数的改变,从而使化学平衡移动。温度对标准平衡常数的影响用van’tHoff方程描述。

第四节:自发变化和熵
1、自发变化的基本特征:
⑴在没有外界作用或干扰的情况下,系统自身发生的变化称为自发变化。
⑵有的自发变化开始时需要引发,一旦开始,自发变化将一直进行达到平衡,或者说自发变化的最大限度是系统的平衡状态。
⑶自发变化不受时间约束,与反应速率无关。
⑷自发变化必然有一定的方向性,其逆过程是非自发变化。两者都不能违反能量守恒定律。
⑸非自发变化和自发变化都是可能进行的。但是只有自发变化能自动发生,而非自发变化必须借助一定方式的外部作用才能发生。没有外部作用非自发变化将不能继续进行。
2、在反应过程中,系统有趋向于最低能量状态的倾向,常称其为能量最低原理。相变化也具有这种倾向。
系统有趋向于最大混乱度的倾向,系统混乱度的增加有利于反应的自发进行。
纯物质完整有序晶体在0K时熵值为零;.
⑴熵与物质聚集状态有关。同一种物质气态熵值最大,液态次之,固态熵值最小。
⑵有相似分子结构且相对分子质量又相近的物质,其值相近。分子结构相近而相对分子质量不同的物质,其标准摩尔熵值随分子质量增大而增大。
⑶物质的相对分子质量相近时,分子构型越复杂,其标准摩尔熵值越大。
6、反应的标准摩尔熵变等于各生成物的标准摩尔熵值之和减去各反应物的标准摩尔熵值之和
7、在任何自发过程中,系统和环境的熵变化总和是增加的。即:
自发变化
非自发变化
平衡状态
8、
第五节:Gibbs函数
Gibbs函数被定义为:,被称为Gibbs自由能。
在不做体积功和定温定压条件下,在任何自发变化中系统的Gibbs函数是减少的,由得
⑴当<0,>0时反应能正向进行。
⑵当>0,<0时反应在高温下能正向进行。
⑶当<0,<0时反应在低温下能正常进行。
⑷当>0,<0时反应不能正向进行。
当时的在吸热熵增反应中是反应能正向进行的最低温度;在放热熵减反应中是反应能正向进行的最高温度。因此这个温度就是反应是否能够正向进行的转变温度。
物质B的标准摩尔生成Gibbs函数(B,相态,T)是指在温度T下由参考状态单质生成物质B(且时)的标准摩尔Gibbs函数变。
<-40时反应多半能正向进行;>40时反应大多逆向进行;-40<<40时要用来判断反应方向。
Van’tHoff方程:㏑

第五章:酸碱平衡
第一节:酸碱质子理论
1、酸碱质子理论:凡是能释放出质子的任何含氢原子的分子或离子都是酸;任何能与质子结合的分子或离子都是碱。简言之酸是质子给予体,碱是质子接受体。
2、质子理论强调酸和碱之间的相互依赖关系。酸给出质子后生成相应的碱,而碱结合质子后生成相应的酸。酸与碱之间的这种依赖关系称为共轭关系,相应的一对酸和碱称为共轭酸碱对。酸给出质子后生成的碱为这种酸的共轭碱,碱得到质子后所生成的酸称为这种碱的共轭酸。
酸碱解离反应是质子转移的反应。在水溶液中酸碱的电离时质子转移反应。盐类水解反应实际上也是离子酸碱的质子转移反应。
既能给出质子又能接受质子的物质称为***物质。
酸碱的强度首先取决于其本身的性质,其次与溶剂的性质等有关。酸和碱的强度是指酸给出质子和碱接受质子能力的强弱。给出质子能力强的酸是强酸,接受质子能力强的碱是强碱;反之,就是弱酸和弱碱。
溶剂的碱性越强溶质表现出来的酸性就越强,溶剂的酸性越强溶质表现出来的碱性就越强。
第二节:水的电离平衡和溶液的PH
对反应,被称为水的离子积常数。25℃时,。
第三节:弱酸、弱碱解离平衡
1、酸的水溶液中存在质子转移反应:,其标准平衡常数
简写为,称为弱酸HA的解离常数,弱酸解离常数的数值表明了酸的相对强弱。解离常数越大酸性越强,给出质子能力越强。值受温度影响但变化不大。
2、在一元弱碱的水溶液中存在反应:,,称为一元弱碱B的解离常数。
3、解离度的定义为解离的分子数与总分子数的比值,即,解离度越大越大,PH越小。解离度与解离常数关系为。对碱同样适用。
第四节:缓冲溶液
同离子效应:在弱酸或弱碱的溶液中,加入与这种酸或碱含相同离子的易溶强电解质,使酸或碱的解离度降低。
缓冲溶液:具有能够保持PH相对稳定性能的溶液(也就是不因加入少量强酸或强碱而显著改变PH的溶液。缓冲溶液通常由弱酸和他的共轭碱组成。缓冲溶液PH计算公式:㏒,㏒
第五节:酸碱指示剂
当溶液中即时,溶液呈现出的颜色;当即时,溶液呈现的颜色;当即时,溶液呈现两者的混合颜色。
指示剂的变色范围是,但是由于人的视觉对不同颜色的敏感度的差异实际变色范围常常小于两个pH单位。
第六节:酸碱电子理论
酸是任意可以接受电子对的分子或离子;酸是电子对的接受体,必须具有可以接受电子对的空轨道。碱则是可以给出电子对的分子或离子;碱是电子的给予体,必须具有未共享的孤对电子。酸碱之间以共价键相结合,并不发生电子对转移。
第七节:配位化合物
在配合物中Lewis酸被称为形成体(或中心离子),Lewis碱被称为配体。配合物的定义是形成体与一定数目的配体以配位键按一定的空间构型结合形成离子或分子。这些离子或分子被称为配位个体。形成体通常是金属离子或原子,也有少数是非金属元素(B,P,H)。通常作为配体的是非金属的阴离子或分子。
在配体中,与形成体成键的原子叫做配位原子;配位原子具有孤对电子。常见的配位原子有F,Cl,Br,I,S,N,C等。配体中只有一个配位原子的称为单齿配体,有两个或两个以上配位原子的称为多齿配体。在配位个体中,与形成体成键的配位原子个数叫作配位数。常见多齿配体有:
配合物的化学式:配合物的化学式中首先应先列出配位个体中形成体的元素符号,在列出阴离子和中性分子配体,,将整个配离子或分子的化学式括在方括号中。
配合物的命名:命名时,不同配体之间用·隔开。在最后一个配体名称后缀以“合”字。
⑴含配阴离子的配合物的命名遵照无机盐命名原则。例如为硫酸四氨合铜为***化六氨合铂。
⑵含配阴离子的配合物,内外层间缀以“酸”字。例如为六***合铁酸钾
⑶配体的次序:
含有多种无机配体时,通常先列出阴离子名称,后列出中性粒子名称。例如为三***·氨合铂酸钾
配体同是中性分子或同是阴离子时,按配位原子元素符号的英文字母顺序排列,例如***化五氨·水合钴。
若配位原子相同,将含原子数较少的配体排在前面,较多原子数的配体排在后面;若配位原子相同且配体中含有的与子数目也相同,则按结构中与配位原子相连的非配位原子元素符号的英文字母顺序排列。例如为氨基·硝基·二氨合铂
配体中既有无机配体又有有机配体,则无机配体排在前面有机配体排在后面。例如为三***·乙烯合铂酸钾。
简单配合物:配合物分子或离子只有一个中心离子,每个配体只有一个配位原子与中心离子成键。
螯合物:在螯合物分子或离子中,其配体为多齿配体,配体与中心离子成键,形成环状结构。
多核配合物:多核配合物分子或离子含有两个或两个以上的中心离子,中心离子间常以配体相连。
羰合物:某些d区元素以CO为配体形成的配合物称为羰合物。
烯烃配合物:某些d区元素以不饱和烃为配体形成的配合物称为烯烃配合物。
第八节:配位反应与配位平衡
1、,是配合物的解离常数,又称为配合物的解离常数或不稳定常数。越大,配合物越不稳定。
2、,是配合物生成常数,又称为稳定常数或累积稳定常数。
3、一般来说配合物的逐级稳定常数随着配位数的增加而减少。
4、以N,O,F等电负性大(吸引电子能力强),半径小,难被氧化(不易失去电子),不易变形(难被极化)的原子为配位原子的碱成为硬碱。反之则为软碱,介于二者之间的为交界碱。
5、硬酸多是电荷数较多,半径较小,外层电子被原子核束缚得较紧而不易变形(极化率较小)的阳离子。反之则为软酸,介于两者之间的为交界酸。
6、常见的酸和碱分类如下:
硬酸
软酸
交界酸

金属原子…
硬碱
软碱
交界碱

7、软硬酸碱原则:软亲软,硬亲硬
第六章:沉淀溶解平衡
第一节:溶解度和溶度积
1、溶解度:在一定温度下,达到溶解平衡时,一定量溶剂中含有的溶质质量。
2、常见无机化合物溶解性:
常见无机酸是可溶的,硅酸是难溶的;
氨、族氢氧化物,是可溶的;是微溶的;其余元素的氢氧化物都是难溶的。
几乎所有的***盐都是可溶的;是微溶的。
大多数醋酸盐是可溶的;是难溶的。
大多数***化物是可溶的;是微溶的;是难溶的。
大多数溴化物,碘化物是可溶的;是微溶的;是难溶的。
大多数硫酸盐是可溶的;是微溶的;,,是难溶的。
大多数硫化物是难溶的,第一主族,第二主族金属硫化物和是可溶的。
多数碳酸盐,磷酸盐,亚硫酸盐是难溶的;第一主族(Li除外)和铵离子的这些盐是可溶的。
多数***化物是难溶的;第一主族(Li除外)金属***化物,是可溶的;
是微溶的。
几乎所有的***酸盐,高***酸盐都是可溶的;是微溶的;
几乎所有的钠盐,钾盐均是可溶的;是难溶的。
对于一般沉淀反应来说:,溶度积的通式是
难溶电解质的溶度积常数的数值在稀释溶液中不受其他离子存在的影响,只取决于温度。温度升高,多数难溶化合物的溶度积增大。
第二节:沉淀的生成和溶解
同离子效应:在难溶电解质的饱和溶液中,加入含有相同离子的强电解质时,难溶电解质的溶解度将降低。同离子效应使难溶电解质的溶解度降低。
盐效应使难溶电解质溶解度增大。一般来说,若难溶电解质的溶度积很小时,盐效应的影响很小,可忽略不计;若难溶电解质的溶度积较大,溶液中各种离子的总浓度也较大时,就应考虑盐效应的影响。
金属硫化物的溶解平衡:
,
称为在酸中的溶度积常数。
某些难容硫化物的溶度积常数:
第七章:氧化还原反应电化学基础
第一节:氧化还原反应基本概念
有电子得失或转移的反应称为氧化还原反应。
表示元素氧化态的数值称为氧化数又称氧化值。
⑴在单质中元素氧化值为零。
⑵在单原子离子中,元素氧化值等于离子所带电荷数。
⑶在大多数化合物中,氢的氧化值为+1,只有在金属氢化物中,氢的氧化值为-1。
⑷通常在化合物中氧的氧化值为-2,但是在等过氧化物中养的氧化值为-1,在氧的***化物中,如中氧的氧化值为+2,+1。
⑸在所有***化物中***的氧化值为-1。
⑹碱金属和碱土金属在化合物中氧化值分别为+1和+2。
⑺在中性分子中,各元素氧化值代数和为零。在多原子离子中,各元素氧化数代数和等于离子所带电荷数。
第二节:电化学电池
电池图示:将发生氧化反应的负极写在左边,发生还原反应的正极写在右边;并按顺序用化学式从左到右依次排列各个相的物质组成和状态;用单垂线“︱”表示相与相间的界面,用双折线“‖”表示盐桥。
Faraday定律:
⑴在电化学电池中,两极所产生或消耗的物质的物质的量与通过电池的电荷量成正比。