1 / 16
文档名称:

压气站、长输管道.docx

格式:docx   大小:23KB   页数:16页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

压气站、长输管道.docx

上传人:1485173816 2022/11/26 文件大小:23 KB

下载得到文件列表

压气站、长输管道.docx

相关文档

文档介绍

文档介绍:该【压气站、长输管道 】是由【1485173816】上传分享,文档一共【16】页,该文档可以免费在线阅读,需要了解更多关于【压气站、长输管道 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。压气站 以压力能形式给天然气提供输送动力作业站。
分类
按压气站在管道沿线位置分为起点压气站、中间压气站和终点充气站。起点压气站位于气田集气中心或处理厂附近,为天然气提供压力能,并有气体净化、气体混合、压力调节、气体计量、清管器发送等作业。中间压气站位于运输管道沿线上,主要是给在输送中消耗了压力能天然气增压。终点充气站位于储气库内,主要是将输来天然气加压后送入地下储气库。
设备
压气机组合而成压气机组是压气站主要设备。长输管道采用压气机有往复式和离心式两种。前者具有压缩比〔出口与进口压力之比〕高及可通过气缸顶部余隙容积来改变排量特点,适用于起点压气站和终点充气站。离心式压气机压缩比低,排量大,可在固定排量和可变压力下运行,适用于中间压气站。两种压气机均可用并联、串联或串联和并联兼用方式运行。需要高压缩比,小排量时多用串联;需要低压缩比,大排量时多用并联;压力和输量有较大变化时,可用串联和并联兼用方式运行。功率不同压气机可以搭配设置,便于调节输量。往复式和离心式两种压气机也可在同一站上并联使用。
压气机选择,除满足输量和压缩比要求,并有较宽调节范围外,还要求具有可靠性高、耐久性好,并便于调速和易于自控等。在满足操作要求和运行可靠前提下,尽量减少机组台数;功率为1000~5000马力机组,有3~5台压气机,并有1台备用,大功率机组一般没有备用机。压气机用原动机有燃气发动机、电动机和燃气轮机等多种〔见管道动力机械〕。

流程
压气站流程由输气工艺、机组控制和辅助系统等三局部组成。输气工艺局部除净化、计量、增压等主要过程外,还包括越站旁通、清管器接收及发送、平安放空与紧急截断管道等。机组控制局部有启动、超压保护、防喘振循环管路等。辅助系统局部包括供应燃料气、自动控制、冷却、润滑等系统。图1为中间压气站工艺流程图。此站配置有三台燃气轮机驱动离心式压气机,其中机组2为备用,机组1、3可并联,当需要作串联使用时,那么可由机组2与机组3或与机组1串联运行。并联流程是来自干线上一站天然气,先在气体除尘区除去固体颗粒,再经机组3、1增压,经冷却后输往下一站;串联运行时,来自上站天然气先经除尘区除尘,再经机组3增压,增压后天然气输至冷却区冷却,然后进入机组2再次增压,再冷却后进入干线输往下站。如果天然气不需要增压直接输往下站时,那么可关闭除尘区前进口阀,翻开越站旁通管路,让天然气越站通过。
功能
压气站应具有启停原动机、开关阀门和报警等根本控制功能;并有防止喘振、消除噪声和防止天然气排出温度过高设施。喘振是离心式压气机在气流速度过低时所发生压力波动和机组振动,并产生很强噪声现象,如在发生喘振时管道继续运行将会导致压气机过热和损坏。因此需在机组上安装喘振抑制阀和循环管路,以便在工况接近喘振边界时开启喘振抑制阀,让气体循环,防止喘振发生。气体压缩和减压都会造成很强噪声,为了降低噪声,可在压气机出口管路上装设消声器,将汇管埋入地下,在管路上包覆隔声和吸声材料等,采用多级调压,控制气体通过站内管道流速〔小于30米/秒〕,可降低减压引起噪声。压气机出口排气温度较高,除进展冷却外,还需考虑管道热膨胀和补偿。进入输气管道温度应低于涂敷在管道外绝缘层软化点,一般为40~65
℃。压气机冷却可用水冷或强制空气冷却。为减少压气站能耗,除选用燃料耗用少机组外,还应考虑热能综合利用,如利用燃气发动机和燃气轮机排气余热制冷,冷却出站天然气和加热燃料气等。
长距离输气管道又叫干线输气管道,它是连接天然气产地与消费地运输通道,所输送介质一般是经过净化处理、符合管输气质要求商品天然气。长距离干线输气管道管径大、压力高,距离可达数千千米,大口径干线年输气量高达数百亿立方米。长距离输气管道主要包括:输气管段、首站、压气站〔也叫压缩机站〕、中间气体接收站、中间气体分输站、末站、清管站、干线截断阀室等。实际上,一条输气管道构造和流程取决于这条管道具体情况,它不一定包括所有这些局部。
与输油管道一样,在管路沿线每隔一定距离也要设中间截断阀,以便发生事故或检修时关断。沿线还有保护地下管道免受腐蚀阴极保护站等辅助设施。通常需要与长距离输气管道同步建立另外两个子系统是通信系统与仪表自动化系统,这两个系统是构成管道运行SCADA系统根底,其功能是对管道运行过程进展实时监测、控制和远程操作,从而保证管道平安、可靠、高效、经济地运行。
国外油气管道技术近几年开展比拟快,有许多新技术、新工艺、新材料、新设备被不断用于新管道建立和老管道改造,有效地降低了工程造价,提高了施工质量,保证了新建管道顺利投产。由于国外管道建立时间比拟长,平安隐患严重,因此,围绕节能降耗和平安运营,国外管道公司大力开展技术革新,对老管道定期进展检测和完整性评价,采用计算机系统优化运行管理。我们跟踪国外管道技术最新开展动态,旨在找出差距,明确方向,为我国油气管道下一步科研立题提供参考和借鉴。
1928年,苏联建成格罗兹内至图阿普赛焊接式钢制长输原油管道,揭开了现代管道工业开展序幕。至今,经过70多年开展,世界管道工业,尤其是工业兴旺欧美国家,无论是从制管、设计、施工,还是从输送工艺、管道自动控制、运行管理等方面都得到了长足开展,油气管道在世界运输业中发挥着越来越重要作用。与此同时,与管道输送有关各种新工艺、新技术、新材料、新设备和新产品层出不穷,特别是从20世纪60年代开场,管道工业进入了快速开展时期,各国油气管道公司非常注重各种先进技术研究与开发,很多管道在设计建立时就大量采用最新一些研究成果。高度自动化技术应用,不仅保证了管道运行平安可靠性,而且减少了操作人员,大大降低了运行费用,使企业处于较好盈利水平。本文归纳了国外原油、成品油和天然气管道输送技术主要开展趋势。
一、国外原油管道输送技术开展趋势.
目前,世界范围内高粘、易凝原油管道长距离输送根本上仍是采用加热和稀释两种工艺。针对现役管道输量逐年下降、稠油开采日益增多现状,以提高管道运行平安性、节能降耗为目各种新技术、组合工艺研究已成为热点,像物理场处理〔磁处理、振动降粘〕、水输〔液环、悬浮、乳化〕、器输〔滑箱、膜袋〕、充气降粘〔充饱和气增加输量〕、混输和顺序输送等等多种工艺研究,有些已进入工业试验与短距离试输阶段。总体上,国外原油管道输送工艺正朝着多元化和新型化方向开展。对特定品质原油而言,一种输油工艺只有在特定环境下才有效。也就是说,对于不同种类原油和不同地理环境,采用输送工艺是不同。尽管目前世界各国管道工业开展水平存在着差距,但评价一种输送工艺优劣标准应该是一致,主要有以下几点:
〔1〕有效性。有显著降粘、减阻效果或对某一类粘凝油有效。
〔2〕适应性。适用范围广,对油品性质、站间距、输量及输送环境有较高适应性。
〔3〕简易性。工艺设备简单,使用及维护简易,自动化程度高,易于实现集中控制与管理。
〔4〕经济性。能耗少,本钱低,效益高。
国外先进原油管道普遍采用密闭输送工艺、高效加热炉和节能型输油泵;运用高度自动化计算机仿真系统模拟管道运行和事故工况,进展泄漏检测,优化管道调度管理;对现役管道定期进展平安检测和完整性评价。例如,美国全美管道就是世界上最先进一条热输原油管道,全长2715km,管径760mm,全线采用计算机监控和管理系统〔SCSS〕,在控制中心调度人员通过计算机可实现管道流量、压力及泵、炉、阀等设备自动控制,仿真系统软件可完成泄漏检测、定位、设备优化配置、运行模拟、培训模拟等功能。
目前,我国与美国、苏联、印尼等国长输原油管道广泛采用加热输送工艺,就工艺方法本身而言,我国与国外水平相当,但在管道运行管理和主要输送设备有效利用方面还存在着一定差距。
,加热炉是热输原油管道主要耗能设备,苏联主要使用直接式加热炉,美国既使用直接式加热炉,也使用间接式加热炉。我国20世纪80年代后期开场大量采用间接式加热炉,与国外相比,自动化程度不高,主要部件像换热器、炉管等耐腐蚀性差,热媒炉系统自动控制和调节系统实际使用水平偏低,余热回收装置普遍存在腐蚀、积灰、传热效率不高问题,今后应从节能角度出发,大力开展燃烧节能新技术、新设备研究,尤其是新型高效燃烧器、余热回收装置、燃油添加剂研制。

据统计,我国输油泵运行效率比国外先进水平低10%~20%,有相当数量泵处于局部负荷下工作,工作流量远低于额定流量,而工作压力远高于额定压力。传统上采用阀门节流,虽然在实际使用中很有效,但造成大量能源浪费,是一种不经济运行方式。目前,国外大型输油泵普遍采用电机调速控制,节电率可达40%,节能效果十分显著。而我国输油泵调速节能技术应用范围较窄,主要存在以下几个问题:
〔1〕应根据泵不同运行规律〔指泵流量变化范围和在每种流量下运行时间〕来选择调速装置。泵运行规律一般可分为高流量变化型、低流量变化型、全流量变化型和全流量间歇型四种。
高流量变化型建议采用晶闸管串级、液力偶合器等调速方式;低流量变化型及全流量间歇型泵一般采用变频调速,但应具备低速到全速相互自动切换装置;对于全流量变化型泵,当低流量运行时间较长时,以变频调速方式较适宜,如果高流量运行时间较长,那么用串级调速或低效调速装置。
〔2〕选用调速装置应考虑泵容量。对于100kW以上大型输油泵,节能效果显著,因此,在选择调速装置时应优先考虑高效装置。而对于100kW以下小容量泵,那么首先考虑调速装置初投资不宜过高。
〔3〕注意电机调速范围。泵电机转速调节范围不宜太大,通常最低转速不小于额定转速50%,一般在70%~100%之间。因为当转速低于40%~50%时,泵自身效率明显下降,是不经济。
此外,从技术性和经济性两方面考虑,还应注意调速装置可靠性、维修性、功率因数及高次谐波对电网干扰,通过综合分析比拟,选择最优方案。
* 目前,原油储罐计量方法主要有两种,一种是基于体积计量方法,另一种是基于质量计量方法。国外大多数石油公司根本采用体积计量方式,其油罐自动计量系统由测量系统和计算机监控系统两局部组成,其中对罐内油品平均温度测量是决定计量精度关键。而对于油气混输管道,目前国外正在研究和开发多相流质量流量计,这种流量计可使工艺流程简化,不需要进展油、气、水别离便能直接测量,取消了计量别离器和计量管汇,减少建立和维护费用。
二、成品油管道输送技术 美国成品油管道运输处于世界领先地位,其干线管道长度约占世界成品油管道总长度50%以上,其次是加拿大、西欧和苏联。国外成品油管道是面向消费中心和用户多批次、多品种、多出口商业管道,管道运行自动化管理水平较高,已实现运行参数、泄漏检测、混油浓度监测、界面跟踪和油品切割自动控制,目前主要开展趋势有以下几个:
〔1〕成品油管道正向着大口径、大流量、多批次方向开展,除输送成品油外,还输送其他液体烃类化合物。制订输送方案非常饱满,如世界最大成品油管道系统——美国科洛尼尔管道,复线建成后输量到达原设计3倍,双线可顺序输送不同牌号成品油118种,一个顺序周期仅为5天。
〔2〕广泛采用管道优化运行管理软件系统,合理安排各批次油品交接时间,在极短时间内系统可自动生成调度方案,对管内油品流动过程进展动态图表分析,远程自动控制泵和阀门启停,实现水击超前保护。
〔3〕目前,成品油顺序输送中混油界面检测以超声波检测法为开展趋势,特别是美国在这方面保持着技术领先地位。
三、天然气管道输送技术开展
国外长输天然气管道开展比拟早,从20世纪50年代,苏联就开场了长输天然气管道建立,在80年代,苏联建立了6条超大型中央输气管道系统,全长近20000km,管径1220~1420mm,是当今世界上最宏大管道工程。经过半个多世纪开展,国外长输天然气管道无论在设计、施工、运营管理,还是在管材、原动机、储库调峰技术都有了很大开展,特别是大口径、高压干线输气管道施工技术更处于领先地位,有许多好经历和成熟技术可供借鉴。当前,国外输气管道技术开展主要有以下几个特点:
〔1〕增大管径。国外干线天然气管道直径一般在1000mm以上,例如,苏联通往欧洲干线天然气管道直径为1420mm,著名阿意输气管道直径为1220mm,同时国外大口径管道施工技术也非常成熟,而我国在这方面还比拟欠缺。
〔2〕提高输气压力。目前,西欧和北美地区天然气管道压力普遍都在10MPa以上,像阿意输气管道最高出站压力达21MPa〔穿越点处〕,,新近建成Alliance管道最大许用运行压力为12MPa。
〔3〕广泛采用内涂层减阻技术,提高输送能力。国外输气管道采用内涂层后一般能提高输气量6%~10%,同时还可有效地减少设备磨损和清管次数,延长管道使用寿命。
〔4〕提高管材韧性,增大壁厚,制管技术开展较快。国外输气管道普遍采用X70级管材,X80级管材也已用于管道建立中。德国RuhrgasAG公司在其Hessen至Werne输气管道上〔φ1219mm〕首次采用了X80级管材。据有关文献介绍,用X80级管材可比X65级管材节省建立费用7%。目前,加拿大、法国等国家输气管道已采用了X80级管材,此外,日本和欧洲钢管制造商正在研制X100级管材。
〔5〕完善调峰技术。为保证可靠、平安、连续地向用户供气,兴旺国家都采用金属储气罐和地下储气库进展调峰供气。目前,西方国家季节性调峰主要采用孔隙型和盐穴型地下储气库,而日调峰和周调峰等短期调峰那么多利用管道末端储气及地下管束储气来实现。天然气储罐以高压球罐为主,×104m3。
〔6〕提高压缩机组功率,广泛采用回热循环燃气轮机,用燃气轮机提供动力或发电。国外干线输气管道压缩机组普遍采用大功率,例如俄罗斯Gazprom天然气公司压缩机站单套压缩机平均功率都在10MW以上,欧美国家也是如此,像美国通用电器公司〔GE〕,LM2500型功率为22MW,MS5000型为24MW。采用燃气轮机回热循环及联合循环系统收到了很好节能效果,如著名阿意输气管道对Messina压气站燃气轮机组进展改造,采用回热联合循环系统后,%%。国外还广泛采用压缩机机械干密封、磁性轴承和故障诊断等新技术,不仅可以延长轴承使用寿命,取消润滑油系统,降低压缩机运行本钱,而且还可以从根本上提高机组可靠性和完整性。
除上述特点外,国外天然气管道在计量技术、泄漏检测和储存技术等方面也取得了一些新进展。

计量在天然气测试技术中占有极其重要地位,准确计量不仅可以防止天然气贸易中上、中、下游诸多矛盾,而且可以提高管道管理水平。国外天然气计量技术经历了体积计量、质量计量和热值计量三个开展阶段,20世纪80年代以后,热值计量技术应用在西欧和北美日益普遍,已成为当今天然气计量技术开展方向。天然气热值计量是比体积和质量计量更为科学和公平计量方式,由于天然气成分比拟稳定,按热值计价可以表达优质优价,国外普遍以热值为计价依据。随着我国参加WTO,为提高我国能源管理水平,与国际接轨,我国今后也将推广应用热值计量技术。天然气热值测定方法有直接测定法和间接计算法两种,传统间接计算法是先通过测定天然气中各组分浓度,再计算混合气体热值。近几年,天然气热值直接测量技术开展较快,特别是在自动化、连续性、准确度等方面有了很大提高。

美国天然气公用公司通常使用火焰电离检测技术〔FID〕检查干线管道和城市配气管网泄漏,这种技术非常有效。但由于检测车行驶速度慢〔一般仅为3~7m/h〕,劳动强度大,费用高,直接影响检测结果。目前,美国天然气研究所〔GRI〕正在进展以激光为根底遥感检漏技术研究,该方法是利用红外光谱〔IR〕吸收甲烷特性来探测天然气泄漏。该遥感系统由红外光谱接收器和车载式检测器组成,能在远距离对气体泄漏热柱进展大面积快速扫描,现场试验说明,检漏效率较之以前提高50%以上,且费用大幅度下降。此外,加拿大、美国、俄罗斯等国家还在直升飞机上安装红外或激光遥感探测器进展气体泄漏检测,大大缩短了巡检周期,扩大了检测范围。