1 / 8
文档名称:

Symmetries and integrability of the modified Camassa–Holm equation with an arbitrary parameter 2021 A Durga Devi.pdf

格式:pdf   大小:268KB   页数:8页
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

Symmetries and integrability of the modified Camassa–Holm equation with an arbitrary parameter 2021 A Durga Devi.pdf

上传人:小舍儿 2023/1/22 文件大小:268 KB

下载得到文件列表

Symmetries and integrability of the modified Camassa–Holm equation with an arbitrary parameter 2021 A Durga Devi.pdf

相关文档

文档介绍

文档介绍:该【Symmetries and integrability of the modified Camassa–Holm equation with an arbitrary parameter 2021 A Durga Devi 】是由【小舍儿】上传分享,文档一共【8】页,该文档可以免费在线阅读,需要了解更多关于【Symmetries and integrability of the modified Camassa–Holm equation with an arbitrary parameter 2021 A Durga Devi 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。Pramana–.(2021)95:85©IndianAcademyofSciences
/s12043-021-02103-2
SymmetriesandintegrabilityofthemodifiedCamassa–Holm
equationwithanarbitraryparameter
ADURGADEVI1,KKRISHNAKUMAR2,∗,RSINUVASAN3andPGLLEACH4
1DepartmentofPhysics,SrinivasaRamanujanCentre,SASTRADeemedtobeUniversity,
Kumbakonam612001,India
2DepartmentofMathematics,SrinivasaRamanujanCentre,SASTRADeemedtobeUniversity,
Kumbakonam612001,India
3DepartmentofMathematics,VIT-APUniversity,Amaravathi522237,India
4DepartmentofMathematics,DurbanUniversityofTechnology,,Durban4000,
RepublicofSouthAfrica
∗-mail:******@
MSreceived5May2020;revised12August2020;accepted30December2021
–Holmequation(MCH),withan
arbitraryparameterk,oftheform
222
ut+k(u−uxx)ux−uxxt+(u−ux)(ux−uxxx)=0.
Thecommutatortableandadjointrepresentationofthesymmetriesarepresentedtoconstructone-dimensional
-dimensionaloptimalsystem,wereducetheorderornumberofindependent
variablesoftheaboveequationandalsoweobtaininterestingnovelsolutionsforthereducedordinarydifferential
,weapplythePainlevétesttotheresultantnonlinearordinarydifferentialequationanditis
observedthattheequationisintegrable.
–Holmequation;symmetry;Painlevétest;integrability.
;;;
-
tiesispresentedin[12,13].Especially,Liesymmetry
Linearandnonlinearpartialdifferentialequationshaveanalysis[14–23],Painlevéanalysis[24–29],Adomian
encompassedthelandscapeofmanydisciplinessuchasdecompositionmethod[30,31],variationaliteration
chemical,physical,biologicalsciences,engineeringandmethod,homotopyanalysismethod,homotopypertur-
mathematicsduetotheirpotentialabilitytoprovideade-bationmethodandvariationalhomotopyperturbation

aremanywaveequationsinengineeringandphysicsstudythenatureofintegrabilityofpartialdifferential
suchastheKorteweg–de-Vries(KdV)equation,nonlin-equations[32].Amongthesemethods,symmetryanaly-
earcoupledKdVequations,modifiedCamassa–HolmsisandPainlevéanalysishavebeenusedbyresearchers
(MCH)equationandsoon[1–11]thatarequitehelpfuleffectivelyduetotheirsystematicprocedureforfind-
,theclosed-formsolutionsofingthesolutionofthegivendifferentialequations
differentialequationsareveryhardtoachieveinmost[22,33,34].
,researchershavebeeninspiredtostudythe
Numeroussystematictechniqueshavebeendevel-integrabilityandsolutionsofvariousCamassa–Holm
opedtofindsolutionsofdifferentialequationsin(CH)typesofequationswithcubicorhigher-ordernon-
[35]andFuchssteiner
madeinidentifying/generatingsystemsofLiénard-type[8]derivedthewell-knownmodifiedCamassa-Holm
0123456789().:V,-vol
85Page2of8Pramana–.(2021)95:85
(MCH)equationwhereXiscalledthe‘infinitesimalgenerator’whichis
denotedby
yt+uyx+2uxy=0,y=u−uxx(1)
121
X=ξ(t,x)∂t+ξ(t,x)∂x+η(t,x)∂u.
byemployingthetri-Hamiltoniandualityapproachto
thebi-HamiltonianrepresentationoftheMKDVequa-Basedonthetheory,theinvariantconditionforeq.(3)

fluidanditspotentialdensity[36].TheMCHequationχ(t,x,u)=χ(t˜,x˜,u˜).
isawater-waveequationandisasuitableapproximation
-Itiswellknownthatonecanreducetheorderofdiffer-
quently,Qiao[36]discussedthenatureofintegrabilityentialequationsaswellasthenumberofindependent

someliterature,theMCHequationisotherwisecalledknownasasymmetryofeq.(3).
asFORQequation[37,38].Therefore,ifXisaLiepointsymmetryforequation
TheMCHequationiscompletelyintegrable[35].Itχ≡0,thenthefollowingconditionistrue:
hasabi-HamiltonianstructureandalsoadmitsaLaxpair[n]χ=λχ|,
[39]andhencemaybesolvedbytheinversescatteringXχ=0
[n]isthenthexten-
acubicextensionofthewell-knownCHequationwhichsionofXinthejetspace.
wasproposedasamodeltodescribetheunidirectional
propagationofshallowwaterwaves[40–42]andaxially
symmetricwavesinhyperelasticrods[43].
–Holm
Thepurposeofthisworkistostudythesymmetryand
equation
integrabilityofMCHequationwithanarbitraryparam-

Qiaodiscussedeq.(2)whichisintegrableonlywhen
2=
ut+k(u−uxx)ux−uxxtk2[36].Healsosuggestedtoexaminetheintegra-
bilityoftheaboveequationforallpossiblevaluesof
+(u2−u2)(u−u)=0,(2)
,weproposeamoregeneralformofeq.
wheretheparameterk∈Rcharacterisesthemagnitude(2)bytakingkask(t),
,k(t),asdis-
[36,44],canberepresentedas
In§2thegeneralprocedureofLie’+k(t)(u−u)2u−u
In§3wediscussLiepointsymmetriesandreductionstxxxxxt
+(2−2)(−)=.
oftheorderofeq.(2).Indeed,wereducetheorderofuuxuxuxxx0(4)
ordinaryorpartialdifferentialequationsbyusingtheWhenk(t)isanarbitraryfunctionoft,eq.(4)admitsa
,Liesymmetriesplaymajorrolesin
symmetry∂
§4,westudythePainlevéanalysisfor
for∂xisgivenby
eq.(2)andweareabletoprovethateq.(2)isintegrable.
=dx=du.
010
Thesolutionoftheauxiliaryequationgivessimilarity
’stheoryvariablesasα=tandu=f(t).Thisleadstothe
trivialsolutionu(x,t)=Ctoeq.(4).Whenk(t)=k,
Supposethatthegivenequationisoftheformanarbitraryparameter,thesymmetriesofeq.(2)are
=∂
χ(t,x,u,ut,ux,utt,utx,uxx,uxxx,...)=0,(3)X1t(5)
X=∂(6)
,2x
wheretxareindependentvariablesanduisadepen-=∂−∂.
,theinfinitesimalX32ttuu(7)
pointtransformationsaregivenasfollows:ThroughoutthisworktheMathematicaadd-onSym
[45–47]-
t˜(t,x,)=t+ξ1(t,x)+◦(2)=t+Xt+◦(2),
metriescanbeusedfortheclassificationofdifferential
x˜(t,x,)=x+ξ2(t,x)+◦(2)=x+Xx+◦(2),
equations,eq.(2)admitstheLiealgebra{2A1⊕sA1}
u˜(t,x,)=u+η1(t,x)+◦(2)=u+Xu+◦(2),whichisidentifiedfromtheMorozov–Mubarakzyanov
Pramana–.(2021)95:85Page3of885
-
acteristicequationforX1isgivenby
[XI,XJ]X1X2X3
dtdxdu
X1002X1==.
X2000100

X32X100Thesolutionofthecharacteristicequationgivesthesim-
ilarityvariablesas
.
ξ=xandu=U(x).
X
Ad[eI]XJX1X2X3
Thus,theinvariantsolutionofeq.(2)isu(x,t)=U(x).
X1X1X2X3−2X1Thisleadstoanordinarydifferentialequation
X2X1X2X3
2222
X3eX1X2X3(U−U)(U−U)−kU(U−U)=0.(8)
Theaboveequationcanberewrittenas
classificationscheme[48–51]basedontheLiebrackets(−)(−)
UU+k2UUU=,
oftheLiesymmetriesofeq.(2)asgivenintable1.0(9)
(U−U)2(U2−U2)
Olver[15]discussedtheadjointrepresentationand
optimalsystemwhichgivesuniquepossiblecombi-where-
nationofsymmetriestoperformthereductionsofgratingeq.(9)once,weget
,ZhaoandHan[52,53]
(−)(2−2)k/2+=,
,UUUUI10(10)
theadjointrepresentationsofthesymmetries,based
whereI1isaconstantofintegration.
XI=−[,]+
ontheformulaAdeXJXJXIXJAseq.(10)isanautonomousequation,ithasthetrivial
2[,[,]]−···∂.
2XIXIXJ,,xThecorrespondingcanonicalvariableis
Accordingtotheiridea,thecommutatortable1and
=().
adjointrepresentationtable2providetheoptimalsystemUVU(11)
ofeq.(2)asfollows:LetthegenericsymmetryvectorThisgivesU=VV.Thereforeeq.(10)becomes
fieldbetakenasX=l1X1+l2X2+l3X3.
22k/2
(VV−U)(U−V)+I1=0,(12)
=0

=0,thentheadjointrepresentationwheredenotesthederivativewithrespecttoUandalso
1eq.(12)canbewrittenas
givesthatX1andX2arelinearlyindependentsymme-
triesandthegenericsymmetryvectorfieldbecomesthe22k/222
(U−V)d(U−V)−2I1=0.(13)
,X1+cX2.
Thesolutionofeq.(13)isgivenby
=0,thenthegenericsymmetryvector
.22(k/2)+1
fieldisX2(U−V)−2I1U−I2=0.(14)
=
,thenthegenericsymmetryvectorThisimplies
fieldisX1.
22/(k+2)
V=±U−(2I1U+I2).(15)
=0
Fromeq.(11)theaboveequationcanbewrittenas
=0,thentheadjointrepresentation

givesthatX1=X3/2.Therefore,thegenericsymme-dU
.=±U2−(2IU+I)2/(k+2).(16)
tryvectorfieldbecomesX3dx12
Consequentlytheone-dimensionaloptimalsystems
areThisyields

U
X1,X2,X3andX1+
=±x+I3.(17)
22/(k+2)
U−(2I1U+I2)


-u(x,t)=cbecausethecanonicaltransformationbased
tionofeq.(2)throughtheinvariantfunctionwhichisonX2isu(x,t)=c.
85Page4of8Pramana–.(2021)95:85

2/(k+2)

(,)=−1/2()×expdx+I2
throughtheinvariantsolutionuxttUx2(U2−(dU/dx)2)
.(,)=
whichisgivenbyX3Withtheuseofuxt(27)
t−1/2U(x),eq.(2)canbereducedtotheequation
2Nowwediscussthetravelling-wavesolutionofeq.
2(U−U)(U2−U)
(2)
−(−)(−(−))=.12
UU12kUUU0(18)takethelinearcombinationofthesetwosymmetriesas
ThisequationcanberewrittenasX4=∂t+C∂
arer=x−Ctandu(x,t)=Q(r).Basedonthese
(U−U)k2U(U−U)1
+−=0,canonicalvariables,eq.(2)canbereducedto
(U−U)2(U2−U2)2(U2−U2)
(−2+2)(−)
(19)CQQQQ

+kQ(Q−Q)2=0,(28)
whererepresentsthedifferentiationwithrespecttox.
Integratingeq.(19)once,wegetwhereQisthefunctionofthenewindependentvariable

.(28)is∂rforwhichthecanonical
22k/21dx
(U−U)(U−U)+I1exp=0,variablesare
2U2−U2

(20)Q(r)=QandQ=W(Q).(29)

,QandQbecome
Aseq.(20)isanautonomousequation,ithasthetrivial
2
symmetry∂=WWandQ=W(WW+W).(30)
givenby
Basedonthesecanonicalvariables(29)andeq.(30),eq.
=().
UVU(21)(28)canbereducedto
=.
UVV(22)
(C−Q2+W2)(WW+W−1)
Therefore,(20)becomes
+k(WW−Q)2=0,(31)
(−)(2−2)k/2
UVVUV
-
−Iexp=0,(23)
1(2−2)triesofeq.(31),wearriveatthefollowingtwopossible
2VUVcases:
wheredenotesthederivativewithrespecttoUandeq.
Case1
(23)canbewrittenasIfk=−2,thenthesymmetriesofeq.(31)are
/
(U2−V2)k2d(U2−V2)
Q
1dU1=∂Q+∂W
−I=.W
21exp220(24)
2V(U−V)(−2+2)−k/2
=CQW∂
Integratingeq.(24)wehave2WW
(2−2)(k/2)+1Q(C−Q2+W2)−k/2
UV=∂
1dU3WW
−2IexpdU−I=0.(25)
12V(U2−V2)2(C−Q2+W2)
4=∂W
Thisprovides(k+2)W
22
22(C+(3+2k)Q+W)
V=U=2Q∂+∂
 /(+)5Q(+)W
1dU2k2k2W
−2I1expdU+I2.(+(+)2+2)
V(U2−V2)2QCk1QW
26=Q∂Q+∂W
(26)(k+2)W
(C−Q2+W2)(k+2)/2
Byusingeq.(21)onecanfindUbysolvingthefollowing7=∂Q
equation:k+2

22(k+2)/2
2Q(C−Q+W)
dUdU+∂W
=U2−2I(k+2)W
dx1dx
Pramana–.(2021)95:85Page5of885
Q(C−Q2+W2)(k+2)/2Bytheuseofbackwardsubstitution,wecanobtain
=∂Q
8k+2thesolutionof(2)asfollows:
(C−Q2+W2)(k+2)/2(C+(k+1)Q2+W2)2=2+2,
+∂.WQ I2(37)
(+)2W
k2W22
W=±Q+I2.(38)
Case2
Ifk=−2,thenthesymmetriesofeq.(31)areNowbytheuseof(29)theaboveequationcanbewritten
as
Q
=∂Q+∂W
122
WQ=±Q+I2,(39)
(−2+2)
CQW
2=∂
Wsolutionofeq.(39)isgivenby
Q(C−Q2+W2)
=∂=±[+].
3WWQI2sinhrI3(40)
22
4=log[C−Q+W]∂QHence,thetravelling-wavesolutionofeq.(2)isgiven
Qlog[C−Q2+W2]by
+∂W
Wu(x,t)=±I2sinh[x−Ct+I3],(41)
(−2+2)[−2+2]
CQWlogCQWwhereIandIareconstantsofintegration.
5=∂W23
WInwhatfollows,wereducetheorderofanotherform
1222ofeq.(2)byusinganequivalenceformofthesymmetry,
6=4Q∂Q+(4Q+(C−Q+W)
WX3,,firstlyconsideranotherform
22
×log[C−Q+W])∂Wofeq.(2),
222
21322vt+k(t)vux+(u−u)vx=0,
7=

最近更新

纺织品的染色工艺与色彩设计 29页

学校清明节领导讲话稿[合集五篇] 3页

管理信息系统的开发方式与方法 30页

2023年施工员之土建施工专业管理实务练习题(一.. 17页

学校水电工工作总结 (五篇材料) 3页

纺织品的创新设计和材料选择 23页

厂房三楼(包括破碎机区域)安全须知 27页

纺织品染色化学研究 23页

学校校长年度工作总结(通用5篇)(全文共7952.. 3页

2023年小学开展家长会工作总结7篇 8页

学校校庆策划书(全文共1190字) 4页

北师大版语文第五册《圆圆的沙粒》课件 27页

北师大版语文八上《云海》ppt课件 30页

2023年(新版)土木工程师(岩土)(三合一)考试真.. 55页

简单的有机化合物甲烷上课用 27页

简单电力网的潮流 26页

北京版六年级下册《沉香救母》PPT课件 31页

北京版三上《小喜鹊的两个家》教学设计 24页

小叶苦丁枝条提取物的植物乳杆菌发酵代谢组分.. 8页

扩展性无创产前检测在胎儿染色体异常中的临床.. 5页

精选工作报告之舞蹈实习报告4篇 11页

等边三角形中的全等问题培训课件 23页

刺猬汉斯课件 27页

等差数列之定义和通项 23页

竹椅子的基本知识讲解 27页

2023年灭火器维修与报废规程 16页

国家免疫规划疫苗预防接种查验证明 1页

佝偻病试题 2页

辅警正风肃纪个人心得体会6篇 20页

五年级下册《心理健康教育》教案(完整版) 50页