1 / 15
文档名称:

俄歇电子能谱分析原理及方法.docx

格式:docx   大小:1,111KB   页数:15页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

俄歇电子能谱分析原理及方法.docx

上传人:艾米 2023/1/27 文件大小:1.08 MB

下载得到文件列表

俄歇电子能谱分析原理及方法.docx

文档介绍

文档介绍:该【俄歇电子能谱分析原理及方法 】是由【艾米】上传分享,文档一共【15】页,该文档可以免费在线阅读,需要了解更多关于【俄歇电子能谱分析原理及方法 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。俄歇电子能谱分析原理及方法
比俄歇电子能仪可能有几个独到之处:(1)能分析固体表面薄到只有几分之一原子层内的化学元素组成,这里说的“表面”指的不只是固体的自然表面,也指固体内颗粒的分界面,(2)俄歇电子谱的精细结构中包含有许多化学信自,借此可以推断原子的价态;(3)除氢和氦外所有元素都可以分析,特别是分析轻元素最为有利;(4)利用低能电子衍射装置和俄歇能谱分析器相结合的仪器(“LEED一Au-ger”装置),有可能从得到的数据资料中分晶体表面的结构,推断原子在晶胞中的位置。因此,俄歇电子能谱仪作为固体材料分析的一个重要工具,近年来发展很快,研究成果不断出现于最新的文献中。本文主要是想要综合论述俄歇电子能谱的分析方法,以及概述它在各方面的应用。[1]
[1]《俄歇电子能谱仪及其应用》许自图
正文
俄歇电子能谱分析的原理

1925年法国科学家俄歇在威尔逊云室中首次观察到了俄歇电子的轨迹,并且他正确的解释了俄歇电子产生的过程,为了纪念他,就用他的名字命名了这种物理现象。到了1953年,兰德才从二次电子能量分布曲线中第一次辨识出这种电子的电子谱线,但是由于俄歇电子谱线强度较低,所以当时检测还比较困难。到了1968年,哈里斯应用微分法和锁相放大器,才解决了如何检测俄歇电子信号的问题,也由此发展了俄歇电子能谱仪。俄歇电子能谱仪不仅可以作为元素的组分分析仪器,还可以检测化学环境信息。咋很多的领域都得到了应用,比如基础物理,应用表面科学等等。

当一束具有一定能量的电子束(一次电子)射到固体表面的时候,原子对电子产生了弹性散射和非弹性散射。非弹性散射使得电子和原子之间发生了能量的转移,发出X-射线以及二次电子。这个时候如果在固体表面安装
一个接受电子的探测器,就可以得到反射电子的数目(强度)按能量分布的电子能谱曲线。
图1入射电子在固体中激发出的二次电子能谱
俄歇电子是指外壳层电子填补内壳层空穴所释放出来的能量激发了外壳层的另外一电子,并且使得它脱离原子核,逃逸出固体表面的电子,这个过程被俄歇发现,所以称为俄歇电子。
图2入射电子束示意图
图3俄歇电子效应图
因为不同的元素原子具有它特征的俄歇电子能量,也就是具有特征的俄歇峰,因此可
以用来鉴别元素。
俄歇电子在从固体内部逸出进入真空之前,遭到表层电子的非弹性碰撞发生能量损失,所以有一个临界的深度,在这个深度以下的俄歇电子不能够逸出固体表面,这个深度用俄歇电子平均自由程来表达,可以近似的认为主要与俄歇电子的能量有关,与固体材料的性质无关。经过科学家多年的实验分析拟合,发现俄歇电子的平均自由程和电子能量有如下的关系:λ=(E)^(λ的单位为埃,E的单位为电子伏特),通过这个公式可以估算出不同能量的俄歇电子的逸出深度。所以,俄歇电子成为了表面分析的很有利的工具。[2]
图4俄歇电子平均自由程和能量的关系
俄歇能谱仪
应用俄歇效应来进行研究,需要用到俄歇能谱仪,俄歇能谱仪一般包括以下几个部分:

激发源为同轴电子枪,电子从热阴极发出,之后被电场加速,经过偏转和聚焦之后打在样品之上。

可以将各种不同能量的俄歇电子按能量进行分离,并且聚焦到收集极。

包括了俄歇电子的接收,放大和输出。

能谱分析仪器都需要无油超高真空系统。包括冷凝泵、升华泵及离子泵。冷凝泵又称为吸附泵,主要是利用低温表面的吸附作用来排除气体。升华泵主要是利用化学吸附去除气体,主要是利用Ti丝加热后蒸发,形成Ti膜,这种Ti膜具有很高的化学活性。它能够和很多的活性气体结合,形成稳定的化合物,通过这个方式来达到抽离空气的作用。离子泵是一种磁控放电阴极活性材料溅射而达到抽气目的的装置。
[2]《俄歇能谱的基本原理及应用》任大刚

金属样品通过机械或者化学抛光,并且吹干后,可装入样品室。样品室有特制的样品架,可以放置各种不同样式的样品。[3]
图5俄歇能谱仪
俄歇电子能谱分析的方法及应用

俄歇电子已经成为固体表面元素分析的有力工具,在表面物理化学、翠花、晶界偏析、电镀、半导体等等方面都有很广泛的应用。