1 / 8
文档名称:

Survival of Floquet–Bloch States in the Presence of Scattering 2021 Sven Aeschlimann.pdf

格式:pdf   大小:4,395KB   页数:8页
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

Survival of Floquet–Bloch States in the Presence of Scattering 2021 Sven Aeschlimann.pdf

上传人:王善保 2023/2/5 文件大小:4.29 MB

下载得到文件列表

Survival of Floquet–Bloch States in the Presence of Scattering 2021 Sven Aeschlimann.pdf

相关文档

文档介绍

文档介绍:该【Survival of Floquet–Bloch States in the Presence of Scattering 2021 Sven Aeschlimann 】是由【王善保】上传分享,文档一共【8】页,该文档可以免费在线阅读,需要了解更多关于【Survival of Floquet–Bloch States in the Presence of Scattering 2021 Sven Aeschlimann 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。
SurvivalofFloquet−BlochStatesinthePresenceofScattering
SvenAeschlimann,,RazvanKrause,MarianaChávez-Cervantes,
UmbertoDeGiovannini,HannesHübener,StivenForti,CamillaColetti,KerstinHanff,KaiRossnagel,
AngelRubio,andIsabellaGierz*
CiteThis:,21,5028−5035ReadOnline
ACCESSMetrics&MoreArticleRecommendations*sıSupportingInformation
ABSTRACT:Floquettheoryhasspawnedmanyexciting
possibilitiesforelectronicstructurecontrolwithlight,with

demonstrationinsolids,however,
particular,theinfluenceofscatteringontheformationofFloquet−
-
andangle-resolvedphotoemissionspectroscopywithtime-depend-
entdensityfunctionaltheoryandatwo-levelmodelwithrelaxation
toinvestigatethesurvivalofFloquet−Blochstatesinthepresence
−Blochstateswillbedestroyed
ifscatteringactivatedbyelectronicexcitationspreventsthe

two-levelmodelalsoshowsthatFloquet−Blochstatesreappearat

indicatetheimportanceoflongscatteringtimescombinedwithstrongdrivingfieldsforthesuccessfulrealizationofvariousFloquet
phenomena.
KEYWORDS:Floquet−Blochstates,dissipation,time-andangle-resolvedphotoemissionspectroscopy,
time-dependentdensityfunctionaltheory,driventwo-levelsystemwithdissipation
iththerecentdevelopmentofstrong-fieldterahertzandbetweenTDDFTsimulationsandtr-ARPESmeasurementsfor
Wmid-infraredlasersources,Floquetengineering,
thecoherentinteractionofstronglightfieldswithBlochofgraphene,however,TDDFTsimulationspredictthe
,2021at03:36:42(UTC).electronsinsideasolidisusedtomanipulatethebandopeningofvariousbandgapsintheelectronicdispersion
structureofthematerial,becomesaviableapproachforthatarenotobservedinthetr-


numberoffascinatingphenomena,includingdynamicalaresonantlydriventwo-
1
localizationofchargecarriersandlight-inducedtopologicalThismodelshowsthatFloquet−Blochstateswillbedestroyed
See,3
activatedbyelectronicexcitationspreventsthe
4−6
,however,theBlochelectronsfromfollowingthedrivingfieldcoherently.
abilityoftheBlochelectronstocoherentlyfollowthedrivingThemodelalsoshowsthatFloquet−Blochstatesreappearat



withextremelylongscatteringtimessuchasthetopological
7,8abouttheexperimentalandtheoreticalmethodsandthedata
insulatorBi2Se3andexfoliatedgrapheneatlowtemper-analysisareprovidedintheSupportingInformation.

10TheexperimentalobservationofFloquetBlochstateswith
presenceofdissipationisahotlydebatedtopicbecauseofitstr-ARPESisimpededbythefactthatinthepresenceofa
relevanceforfutureapplicationsandthepossibilitytouse
dissipationtostabilizenovelFloquetphasessuchasthetime

:February25,2021
Here,weusetime-andangle-resolvedphotoemissionRevised:May10,2021
spectroscopy(tr-ARPES)combinedwithtime-dependentPublished:June4,2021
densityfunctionaltheory(TDDFT)andatwo-levelmodel
withrelaxationtoinvestigatethesurvivalofFloquet−Bloch

©
AmericanChemicalSociety/
,21,5028−5035

ℏωfi
-ARPESdataforWSe2forppandspdrivingpulses,respectively,atdrive=280meVwithapeakdrivingeld

ofEvac==0fs,
markthemomentumrangefortheenergydistributioncurves(EDCs)-inducedchangesofthephotocurrent
att=
(EDCs)
(dark)linesarethedata(fit).(dark)redareasshowtheindividual
Lorentziansofthesidebands(mainbands).Column5showstheintensityoftheuppermostreplicabandobtainedbyintegratingthetransient
EDCsincolumn4overtheenergyrangeindicatedbytheblackarrowasafunctionofpump−probedelaytogetherwithaGaussianfit.
strongdrivinglaserfieldphotoemissionoccursfromFloquet−states,whilethereplicabandsappearingforppdrivingpulses
Blochstates(photon-dressedinitialstates)toVolkovstatescontaincontributionsfrombothFloquet−BlochandVolkov
(photon-dressedfree-electronfinalstates).8,20,21Photon-(Supporting
dressingofboththeinitialandthefinalstateresultsintheInformation)inFigure1(b1−b4)weobtainreplicaband
formationofreplicabandsinthephotoelectronspectrumthatintensitiesof(±)%and(±)%forppandsp
areseparatedfromtheoriginalbandstructurebyintegerdrivingpulses,

geometryemployedinthepresentstudy,theVolkovwithintheerrorbars.

contributiontotherst-orderreplicabandsiszerofors-Todeterminethelifetimeofthedrive-inducedreplicabands

polarized(sp)drivingpulseswheretheelectriceldvectorliesweintegratethetime-dependentEDCspresentedinFigure
intheplaneofthesamplesurfaceandisperpendiculartothe1(a4andb4)overtheenergyrangeindicatedbytheblack
directionalongwhichthetransientbandstructureismeasured.

Inthiscase,theexperimentalobservationofrst-orderreplicafittedwithaGaussian[seeFigure1(a5andb5)],indicating
bandswithtr-ARPESprovidesdirectevidenceforthethatthelifetimeofthedrive-inducedreplicabandsis
formationofFloquet−Blochstates21(SupportingInforma-
determinedbythepump−
tion).
durationoftheMIRdrivewas280fsinpanela5and390fs
InFigure1wepresenttr-ARPESsnapshotsofthevalence
Γinpanelb5determinedbythedispersionofthewaveplates
bandofbulkWSe2measuredalongtheK-directioninthe
vicinityoftheK-.
ofFigure1showthemeasuredbandstructurewithoutandInFigure2wepresentTDDFTsimulationsfordirect
withp-polarized(pp)mid-infrared(MIR)drivingfield,comparisonwiththetr-(a1)
-inducedchangesoftheshowsthesimulatedspectrumwithoutmid-infrareddrive.
photocurrentobtainedbysubtractingFigure1(a1)fromPanelsa2anda3ofFigure2showthecorrespondingspectrain

Figure1(a2)areshowninFigure1(a3).Dashedwhitelinesthepresenceofppandspdrivingpulses,respectively,witheld
inFigure1(a1anda2)indicatetheareaofintegrationforthestrengthanddrivingfrequencymatchingtheexperimental

energydistributioncurves(EDCs)presentedinFigure1(a4).(b1b3)weshow
ThecorrespondingdataforspdrivingpulsesarepresentedinEDCsextractedalongthedashedredlinesinFigure2(a1−a3).
Figure1(b1−b4).Ingoodagreementwiththetr-ARPESexperimentsinFigure1
Weobserveclearindicationsfortheformationofreplicawefindthat,inthepresenceofbothppandspdrivingpulses,

(SupportingInformation)theobservationofreplicabandsforcomparisonofthetheoreticalandexperimentalEDCsreveals
spdrivingpulsesindicatestheformationofFloquet−Blochthatthetheoreticalreplicabandintensityissimilartothe
5029/
,21,5028−5035

(a1),inthepresenceofappdrivingpulse(a2),andinthepresenceofanspdriving
pulse(a3).Dashedredlinesina1−a3indicatethepositionsfortheenergydistributioncurves(EDCs)inpanelsb1−-point
atequilibrium(b1),inthepresenceofappdrivingpulse(b2),andinthepresenceofanspdrivingpulse(b3).
experimentalvalueforppdrivingpulsesandsignificantlyaccordingtothemodelfromref20,containcontributionsfrom

Havingdemonstratedthecapabilityofourtr-ARPESsetup[Figure3(a3)]thereplicabandsarefoundtobemuchweaker
togenerateandresolveFloquet−BlochstateswenowturntobecauseoftheirpureFloquet−Blochcharacter(Supporting
thefascinatingscenarioofalight-inducedtopologicalphaseInformation).Also,thesimulationsclearlyshowthepredicted
,
circularlypolarized(cp)lightfieldsispredictedtoopenagapinthepresenceofacircularlypolarized(cp)drivingpulseis
attheDiracpointandturngrapheneintoatopologicalshowninFigure3(a4).AsidefromreplicabandsandRabigaps
(Rabigapsinthefollowing)thespectrumshowsapronouncedbandgapattheDiracpoint.
arepredictedtoopenawayfromtheDiracpointwheretheInordertogetabetterimpressionoftheintensityofthe
unperturbedbandstructurecrossesthenth-orderFloquetreplicabandsaswellasthesizeofthedynamicalbandgaps,
,22BecausethematrixelementforinterbandFigure3(b1−b4)presentsEDCsextractedalongthedashed

transitionsingrapheneishighlyanisotropic2325withnodesverticallinesinFigure3(a1−a4).FromLorentzianfitstothe
(maxima)inthedirectionparallel(perpendicular)totheEDCinFigure3(b3)weextractaRabigapof200meVforthe
polarizationofthedrivingfield,,LorentzianfitsoftheEDCsinFigure
alongthedirectioninmomentumspacethatisperpendicular3(b4)yield100meVfortheRabigapand60meVforthegap
.

−probedelay
howmid-,onlyoneof
,thetwobranchesoftheDiracconeisvisibleinthespectrum.
drivingfrequencyaswellasfieldstrengthwerechosentoIncontrasttothesimulationsthatwereperformedforaneutral
(a1)showsthegraphenelayer,theepitaxialgraphenesamplesusedforthetr-
-
oftheDiracconeisinvisiblebecauseofphotoemissionmatrixbelowtheFermilevel(SupportingInformation).Thesecond
,27InthepresenceofappdrivingfieldthecolumnofFigure4showsthephotocurrentatzeropump−
spectruminFigure3(a2)showsstrongreplicabandsthat,,sp,andcpdrivingpulsesare
5030/
,21,5028−5035

(greenlines)atequilibrium(a1),inthepresenceofappdriving
pulse(a2),inthepresenceofanspdrivingpulse(a3),andinthepresenceofacpdrivingpulse(a4).Blueandreddashedlinesindicatethe
positionsfortheenergydistributioncurves(EDCs)inpanelsb1-(b1),andinthepresenceofapp
drivingpulse(b2).EDCthroughtheDiracpoint(blue)andatthepositionwheretheRabisplittingismostpronounced(red)inthepresenceofan
spdrivingpulse(b3)andinthepresenceofacpdrivingpulse(b4).

showninr