1 / 7
文档名称:

切割机安全操作规程数控火焰切割机安全操作规程.doc

格式:doc   大小:20KB   页数:7页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

切割机安全操作规程数控火焰切割机安全操作规程.doc

上传人:Bonnacon 2023/2/22 文件大小:20 KB

下载得到文件列表

切割机安全操作规程数控火焰切割机安全操作规程.doc

相关文档

文档介绍

文档介绍:该【切割机安全操作规程数控火焰切割机安全操作规程 】是由【Bonnacon】上传分享,文档一共【7】页,该文档可以免费在线阅读,需要了解更多关于【切割机安全操作规程数控火焰切割机安全操作规程 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。切割机安全操作规程数控火焰切割机安全操作规程
切割机安全操作规程数控火焰切割
机安全操作规程
2011-12-02
切割机安全操作规程数控火焰切割机安全操作规程切割机安全操作规程数控火焰切割机安全操作规程
数控火焰切割机
数控火焰切割机数控切割机(CNCCuttingMachine)就是用数字程序驱动机床运动,搭载火焰切割系统,使用数控系统来控制火焰切割系统的开关,对钢板等金属材料进行切割。这种机电一体化的切割设备(如上海钟秀数控火焰切割系列)就称之为数控火焰切割机。数控火焰切割机可分为3大部分:数控系统、火焰切割系统、驱动系统,不同厂家生产的大体相同(国外知名:梅塞尔、小池、伊萨等,国内的有:上海钟秀数控等)。
数控火焰切割机英文名称flamecuttingmachine数控火焰切割机切割具有大厚度碳钢切割能力,切割费用较低,但存在切割变形大,切割精度不高,而且切割速度较低,切割预热时间、穿孔时间长,较难适应全自动化操作的需要。它的应用场合主要限于碳钢、大厚度板材切割,在中、薄碳钢板材切割上逐渐会被等离子切割代替。
编辑本段数控火焰切割机安全操作规程1、火焰切割机操作人员必须经过培训合格方可上岗操作.
2、操作人员必须按规定穿戴好劳保护品方可进入工作岗位。
3、操作人员要把切割机附近有碍安全操作的物料清理干净。
4、操作人员正式开机前要全面检查设备各部位有无异常情况,如发现异常情况,应立即向生产经理报告,采取有效措施消除异常后方可准备开机。
5、开机前要对规定的各润滑点进行注油润滑。
6、正式切割前纵横上下空运行,看是否正常。
7、要查看气源压力表指针位置是否合要求,如果气源压力表指示过低,说明气源压力不足,应调气瓶控制阀或更新气瓶。
8、一切预先检查正常后可按规定程序开机操作。
9、正常工作情况下要时刻注意设备运行情况,如有不正常应停机处理后再工作,停机要按停机程序进行。
10、在上板和下件时要注意吊放安全操作。如果需要站到支架台面上做事,要特别注意摔倒和划伤。
11、工作中要按工件厚度调好燃气压力。
12、在工作结束时,关闭电源、气源,要清理好现场,同时对纵横导轨表面粉尘污物擦拭干净,涂上一层油膜。
火焰切割机几种常用燃料的介绍:
乙炔和石油化工中催化裂化的副产品中的丙烷、丁烷及天然气(甲烷)相比,其燃烧性质的差别主要是由于它们的分子结构不同所致。乙炔分子结构中两碳原子间含有两个很易破裂的π键(CH?CH),化学活性强,燃点低,燃烧速度快,易回火。而烷烃分子结构中只含相对稳定的σ键(如丙烷:CH3-CH2-CH3),因此,其化学活性,燃烧速度均不如乙炔,回火倾向较小。正是由于这种分子结构的差异,燃烧速度的不同,导致它们的火焰热量的分布也有所差异。
乙炔气因其易燃易爆,安全系数低,生产过程中耗能耗电,污染环境,生产成本偏高,以至在生产、存储、运输、使用、环保及价格方面存在诸多缺陷和隐患,发展受到了很大限制,因此许多国家都在研制新的更安全、更节能的工业燃气,中国国家有关部门在全国乙炔生产会议上明确不再审批新建扩建电石厂、乙炔厂。现有的厂家面临转产的境地。国家早在八五期间,就极力推广烷烃类燃气替代乙炔气,如"丙烷气"、"丙烯气"、"天然气"等等,以期逐渐取代乙炔气。
我国工业燃气用量中,70%为乙炔气。以前乙炔气主要是乙炔发生器中制取,由于造成污染和高度不安全性,各地均已发文不得采用(包括管道式)。目前均采用瓶装乙炔气进行工业切割。乙炔化学性质活跃,易爆,极危险。当其与铜、银等金属以及空气、纯氧混合,甚至盛装容器直径较大时都会引起爆炸。使用乙炔气在对碳素钢切割时,易产生切口上缘熔化,挂渣多且不易清除,切面局部硬化等现象,使切割工艺不理想。焊接时需要进行打磨,增加了生产成本。沿海地区造船厂近年来已经禁止在造船平台使用乙炔,改用其他新型切割气,多年来人们一直尝试采用其他燃料代替乙炔作为切割气,但由于其他燃料如:天然气,液化石油气,丙烷气,丙烯气,人工煤气,二甲醚等燃料在氧气中燃烧温度低于2500?,直接作为切割气不理想,需要加助燃添加剂对母气进行催化,裂化,助燃,改变燃气燃烧方式,从而提升火焰温度,使之在氧气中燃烧的火焰温度达到或超越乙炔的3100?,实现替代乙炔的目的。
乙炔在很长一段时间内成为工业切割、焊接、火焰喷图等工艺不可替代的燃料,乙炔在特种切割中发挥了不可替代的作用,如球墨铸铁、钼钢、不锈钢等工件的切割。焊接工艺中乙炔较其它燃气更具有特殊的优势,操作简便,适用性强,火焰喷图因其具有速度快,质量好等优点收到广大企业的青睐。
但随着生产力的发展和社会的进步,人类越来越注重环保、节能、安全、高效,对乙炔气暴露出来的弊端和缺陷也有了越来越清晰的认识。上世纪七十年代,在欧美、日本发达国家就已开始逐步淘汰乙炔气,取而代之的是以丙烷、丙烯、天然气、汽油、焦炉煤气、氢气等为主体的工业燃气。
若想达到乙炔的使用效果,必须了解乙炔的理化性质,才能采取相应的技术手段实现烷烃类燃气的可替代性。
乙炔分子式为C2H2,构造式为HC?CH。根据杂化轨道理论,乙炔分子中的碳原子以sp杂化方式参与成键,两个碳原子各以一条sp杂化轨道互相重叠形成一个碳碳σ键,每个碳原子又各以一个sp轨道分别与一个氢原子的1s轨道重叠,各形成一个碳氢σ键。此外,两个碳原子还各有两个相互垂直的未杂化的2p轨道,其对称轴彼此平行,相互"肩并肩"重叠形成两个相互垂直的π键,从而构成了碳碳叁键。两个π键电子云对称地分布在碳碳σ键周围,呈圆筒形。
乙炔分子中π键的形成及电子云分布,现代物理方法证明,乙炔分子中所有原子都在一条直线上,,比碳碳双键的键长短,这是由于两个碳原子之间的电子云密度较大,使两个碳原子较之乙烯更为靠近。
mol-1,比三个σ键的键能和(?mol-1×3)?
要小,这主要是因为p轨道是侧面重叠,重叠程度较小所致。简单炔烃的沸点、熔点以及相对密度,一般比碳原子数相同的烷烃和烯烃高一些。这是由于炔烃分子较短小、细长,在液态和固态中,分子可以彼此靠得很近,分子间的范德华作用力很强。由于乙炔的特殊化学性质,在燃烧过程中,热能释放效率高、化学反应速度快、化学键极易断裂、火焰燃烧速度快,是丙烷类燃气的3倍,因此助燃添加剂需要对烷烃类燃气的分子进行强有力的助分解,达到快速燃烧的目的,实现温度瞬间的提升。
丙烷是石油化工工业的副产品,来源丰富,价格低廉,且燃烧对环境无污染,是乙炔可行的替代品。由于丙烷火焰温度较低,预热时间相对比乙炔长,这是目前推广应用中遇到的一大困难。由于丙烷火焰热量分布分散、温度较低、由火焰导致金属熔化的可能性较小,因此割口上沿不易造成塌边、切口光滑平整、割口下沿挂渣少、易清除。
丙烯的焰心和外焰都有较高的热释放,焰心热量分布与乙炔相似,外焰热量比乙炔高。因此,丙烯既具有乙炔火焰的属性又具有丙烷外焰的高热含量,火焰温度比乙炔焰约低,但比丙烷火焰温度高,是一较好的切割用燃气。丙烯火焰的切割特点是:火焰温度较高,切割预热时间与乙炔相比约有增加,但比丙烷快,由于外焰热含量高,对于厚大构件切割有利。
液化石油气来自炼厂气、湿性天然气或油田伴生气。由天然气和伴生气中得到的液化石油气主要成分是丙烷(为通常俗称为残液的主要成分)、丁烷、丁烯和少量戊烷。液化气成分复杂,燃烧时火焰不集中,热量不均衡,火焰温度低,切割预热时间相应增长,切割速度降低,功效差。
天然气是一种多组分的混合气体,主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,此外一般还含有硫化氢、二氧化碳、氮和水气,以及微量的惰性气体,如氦和氩等。在标准状况下,甲烷至丁烷以气体状态存在,戊烷以上为液体。
由于天然气热值低,燃烧速度慢,火焰温度低,切割预热时间相应增长,消耗燃气和氧气量大,综合成本偏高。切割厚钢板时要获得所要求的总热量燃气消耗量大。要保持切割速度,厚大构件要求外焰热量输出要高,割缝容易加宽,热影响区大,预热穿孔时容易反浆或难于穿透,对金属表面造成影响,需要加添加剂来提高火焰温度。
催化燃烧是燃料在催化剂表面进行的完全氧化反应。在催化燃烧反应过程中,反应物在催化剂表面形成低能量的表面自由基,生成振动激发态产物,并以红外辐射方式释放出能量;在反应完全进行的同时,通过催化剂的选择性来有效地抑制生成有毒有害物质的副反应发生,基本上不产生或很少产生NOx、CO和HC等污染物。
助燃添加剂与天然气(液化石油气)分子结合后,更容易实现分子的裂化,分解,从而改变了燃气的性质,在燃烧状态下改变了气体波长,燃烧频率,燃烧速度,增强热能等,实现了二次完全燃烧,降低了有害物质的生成,降低了热量的散逸,达到了高温催化燃烧的目的。并且助燃催化剂本身具有很好燃烧化学能,因此催化燃烧是目前应用广泛的形式之一。
火焰切割机等离子切割机的成本计算及对比
火焰切割机等离子切割机的成本计算及对比根据金属材料和切割金属的厚度从工艺角度来说,一般5mm以上的碳钢板推荐用火焰进行切割,因为此类钢板产生的热变形很小。不锈钢和有色金属不能用火焰进行切割,原因是不锈钢在受热后表面产生高密度氧化层,阻止热量向下传递,从而影响板材的数控火焰切割机熔断。铜铝等有色金属的散热能力很强,导致割面的热量快速散失,也影响到板材熔断。
等离子切割机配合不同的工作气体可以切割各种氧气切割难以切割的金属,尤其是对于有色金属(不锈钢、铝、铜、钛、镍(切割效果更佳;其主要优点在于切割厚度不大的金属的时候,等离子切割速度快,尤其在切割普通碳素钢薄板时,速度可达氧切割法的5~6倍、切割面光洁、热变形小、几乎没有热影响区。
排除人工成本,火焰切割主要用燃气和氧气,由于火焰割嘴使用寿命相对较长,普通的价格也较低,数控切割机本身耗电较少,故暂不计作成本。等离子切割主要成是在耗电和等离子电极割嘴的损耗。
以切割20mm低碳钢板1个小时为例,可以粗略计算成本如下:
火焰切割约25分钟使用完一瓶氧气,一瓶氧气价格计15元,4瓶氧气相对应耗完1瓶丙烷,一瓶丙烷价格计80元。,。结果为:15×+80×=84元(火焰切割)
等离子假定为200A电源,功率约为30km,工业用电每度计算为1元,原装电极割嘴算100元每套,每套计算使用寿命为5小时。则每小时耗电30度,。结果为:30×1+100×=50元(等离子切割)
,如果火焰切割燃气不用乙炔,用更便宜的丙烷,,那么实际上火焰损耗两个小时,等离子只损耗一个小时。
通过计算,可以得知在使用成本上,等离子切割要比火焰切割每小时低34元。如果把切割效率算进去,切割20mm的钢板,等离子的效率约为火焰的2倍。做同样多的工作,等离子切割的成本每小时竟然比火焰切割少60元以上。
切割成本短期火焰低,长期等离子低。等离子在前期投入的一次性成本比较大,后期成本低。
历史上的今天: