文档介绍:该【油库人员优化配置 】是由【luciferios06】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【油库人员优化配置 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。1
摘要
本文主要争辩了油库管理人员的安排问题,通过分析每项工作岗位的工作时间、次数以及上岗人数等数据,并运用了MATLAB软件对数据进行处理,得出了人员安排的最优方案。
模型一:我们将模型抱负化,假设每月为30天建立时间序列,构造出工作和时间相关的人员安排矩阵,以各组人数最少为目标建立目标函数:
min
建立人员配置的整数规划模型并使用MAYLAB软件求解,得到各类工作人员配置最优方案:,,,,。总共需要人数最少为143人,平均工作量为111。
模型二:在模型一的基础上,争辩了工作专职专人的因素对人员安排的约束,重新进行人员的安排,将CD进行归类统一处理,结合问题一建立整数规划模型,得出人员配置最优方案:求解得到C、D类工作至少需要65人,,总共需要人数最少为141人,平均工作量为113。
模型三:通过模型二的争辩,在ABCD类可以相互兼职的状况下,再次进行人员的配置,建立了问题三的数学模型,求解得A、B、C、D四类工作最少需要员工人数为72人,,总共需要人数最少为112人,平均工作量为131的最优人员安排方案。
模型四:通过层次分析法对前三个问所得的结果进行分析,综合人员数量、平均培训时间、均衡度等因素,在油库的人员配置、管理水平和运行效率方面提出合理化建议。
关键字:人员优化配置整数规划层次分析法MATLAB软件
2
一、问题重述
油库是储存、供应油料及油料装备的重要机构。由于油料是一种易燃、易爆、易挥发、易渗漏,并有肯定腐蚀作用的物质。因此,一个油库管理工作要保证正常的运行,必需要设置计量与质量检测管理、收发油料管理、装备维护与修理管理、平安保障管理、服务保障管理等相关的岗位和人员配制。
某油库现有不同功能、不同规格的大小储油罐80个,储油量达16万立方米以上,年收发油量达7000多立方米,工作任务格外繁重。依据实际需要按工种分类,油库的工作岗位可以分为5大类:(A)计量与质量检测管理;(B)收发油料管理;(C)设备维护与修理管理;(D)平安保障管理;(E)服务保障管理。
由于油库工作的性质要求,每一大类都包括若干个具体的工作岗位,每个岗位都需要数量不等的人员和工作量,附表给出了各类工作岗位、所需要的人员数量和全年的工作量。通常油库的全部人员在保障油库正常运行的条件下,还要参与必要的军事训练和业务学习等活动,所以实际要求每个人全年累积从事油库管理相关工作的总工作量不超过175天(每天按8小时计算),除节假日外,其他时间用于军事训练和业务学习等活动。现在我们争辩解决下列问题:
(1)依据油库正常的工作任务需要,假如要求(A)、(B)、(C)和(D)类人员都配专职,同类中的各工作岗位人员可以兼职。那么各类工作岗位最少需要配制多少人员?平均年工作量是多少?
(2)考虑到人员和编制的问题,有关部门提出除了(A)、(B)两大类专业性较强的工作专职专人外,(C)、(D)两大类在时间允许的状况下可以相互兼职。那么这个油库最少需要多少人员才能保证油库的正常运行?并说明各类人员的年总工作量为多少?
(3)假如油库的全部人员都经过了专业的培训,每个人都能从事(A)、(B)、(C)和(D)类中的任何一项工作,每一个岗位都不设专职人员,那么在时间允许的状况下,最少需要多少人员能够保证油库的正常运行?并说明各类人员的年总工作量为多少?
(4)你对该油库的岗位和人员的配置、提高油库的管理水平和运行效率等方面有什么合理化建议。
依据题目得知,零发油的相关的任务依靠于设备操作,故这些岗位所需人员数固定不变,也必需同时在岗,又由于零发油的时间是不确定的,所以我们在员工配置中将零发油操作相关人员闲置,即在配置过程中不予考虑。
针对问题一二三:以各组人数最少为目标函数,把握人员工作时间、次数,建立人员最优配置的整数规划模型,使用MATLAB软件求解。
针对问题四:通过问题一二三得到的结果,利用层次分析法进行综合分析比较,结合多个因素,对油库的人员配置、管理水平和运行效率方面提出合理化建议。
三、基本假设
3
,一月一日为周一,一年52个周。
,被支配的工作均能够正常完成。
,员工数不任意变动。
变量符号说明
:该类工作所需人数;
:第x类工作的工作总量;
:全部工作的工作总量;
:一年中第j天;
:第i项工作在一年中第j天的在岗人数;
:第x类工作的年平均工作量;
:表示第i个因素对第j个因素的比较结果;
:人员配置满足度的评价。
模型建立与求解
:
员工的安排与工作的效率,工作的时间相关。依据油库正常的工作任务需要,假如将A、B、C和D四类人员都配专职,同类中的各工作岗位人员可以兼职。即说明员工在某一类工作中,只要工作时间不冲突,以及个人工作量限定在肯定范围内可相互兼职,以使得每一类的工作人员达到最少最优。而在工作进行过程中,该大类工作中会遇到多项具体工作同时进行,此时所需的工作人员将会累加。本文将一年365天全部列出用表示其中某一天,得到一时间序列:
假设某大类有m项具体工作,现以表示各大类工作中的第i项具体工作在时刻的在岗人数,建立该大类人员数量安排矩阵Y。
问题要求解出各类工作岗位最优配制员工数,为此,本文确立目标函数如下:
Min
5
依据题设条件,通常油库的全部人员在保障油库正常运行的条件下,还要参与必要的军事训练和业务学习等活动,所以实际要求每个人全年累积从事油库管理关工作的总工作量不超过175天,故有约束条件如下:
综上所述,结合题目所给信息,我们针对问题一中A类工作建立以下目标函数及约束条件:
Min
依据对上述所得的矩阵及所列的目标函数与约束条件,使用MATLAB编程求解(编程见附录2),得到如下结果:。
对于B类工作,从题目表格中我们了解到,工作B4,B5,B6均为零发油操作,由于工作时间不确定,为了使油库正常运行,对于工作B4,B5,B6我们将其所需要的员工人数预置出来。考虑到B1,,我们在此假设B1工作人员在半天内完成工作后利用另外半天完成工作B2,则。依据题中给出的B类工作的信息及建立的模型,确定B类工作的目标函数及约束条件如下:
Min+7
依据对上述所得的矩阵及所列的目标函数与约束条件,使用MATLAB编程求解(编程见附录3),得到如下结果:。
对于C类工作,依据题中所给信息,工作C2零发油工作时间不确定,为了使油库正常运行,将工作C2所需员工人数预置出来。依据题给信息及建立的模型,针对C类工作确定如下目标函数及约束条件:
5
Min+2
依据对上述所得的矩阵及所列的目标函数与约束条件,使用MATLAB编程求解(程序见附录4),得到如下结果:。
分析题目信息,依据D类数据得,工作D2零发油工作时间不确定,为了使油库正常运行,我们将工作D2所需员工人数预置出来。依据题给信息及建立的模型,确定目标函数及约束条件如下:
Min+1
依据对上述所得的矩阵及所列的目标函数与约束条件分析,并使用MATLAB进行求解(程序见附录5),得到结果如下:。
关于E类工作,由于是全专职工作,即只要每个员工的工作量不大于175即可,本文列出了解决函数:
依据上述函数,将题给数据代入求得为5人,为9人,为17人。通过上述的求解,得出油库的除伙食服务保障外所需的员工数为127人,依据题给要求可以计算出所需人数为16人。A,B,C,D,E五类工作所需人数与平均工作时间见下表1。
6
表1:同类中的各工作岗位人员可以兼职时人员安排
工作岗位类别
A
B
C
D
E
人数
4
24
29
39
47
平均工作时间
总人数
147
总平均工作时间
111
问题二中考虑到人员和编制的问题,有关部门提出除了(A)、(B)两大类专业性较强的工作专职专人外,(C)、(D)两大类在时间允许的状况下可以相互兼职。因此,问题二中A、B两类工作求解答案同问题一,
对于C、D类工作,由于工作C2,D2零发油工作时间不确定,为了使油库正常运行,与问题一做同样处理,将工作C2,D2所需员工人数预置出来。然后依据题中所给信息及建立的模型,确定如下目标函数及约束条件:
Min+2
依据对上述所得的矩阵及所列的目标函数与约束条件,使用MATLAB编程求解(程序见附录6),如下得到结果:C、。
E类工作所需员工求解方法同问题一,结果为:47人。
表2C、D在可以相互兼职时的人员安排
工作岗位类别
A
B
CD
E
人数
4
24
65
47
8
平均工作时间
总人数
144
总平均工作时间
、问题三的模型建立与求解
假如油库的全部人员都经过了专业的培训,每个人都能从事(A)、(B)、(C)和(D)类中的任何一项工作,每一个岗位都不设专职人员。
由于工作B4,B5,B6,C2,D2零发油工作时间不确定,为了使油库正常运行,我们仍将工作B4,B5,B6,C2,D2所需员工人数予以预置出处理。分析题目信息,依据题目中所给A、B、C、D四类工作数据,针对问题三确定如下目标函数及约束条件:
Min+15
依据对上述所得的矩阵及所列的目标函数与约束条件,使用MATLAB编程进行求解(程序见附录7),得到结果如下:A、B、C、D类工作的员工数总共为72人平均工作量为
8
。
问题二中AB求解答案同问题一,E类问题求解方法同问题一结果为:40人。
表3C、D在可以相互兼职时的人员安排
工作岗位类别
ABCD
E
人数
72
40
平均工作时间
总人数
119
总平均工作时间
131
首先我们将前三个问题的争辩结果以及平均工作时间进行了列表(见下表4),
表4各方案人员安排总汇
岗位类别
人数
平均工作时间
总人数
平均总工作时间
平均培训时间
均衡度
方案一
A
4
143
130
B
24
C
29
D
39
E
47
方案二
A
4
141
113
128
B
24
CD
65
E
47
方案三
ABCD
72
112
131
110
E
47
其次以油库的人员配置、管理水平和运行效率三个方面为主要因素应用层次分析法比较各个因素的影响程度。
建立层次结构模型:第一层为目标层,即满足度;其次层为准则层,即人员数量、平均培训时间、均衡度;第三层为方案层,即方案一、方案二、方案三。
9
目标层
准则层
决策层
方案1
方案2
方案3
方案4
人员配置满足度
均衡度
人员数量
平均培训时间
图2
(2)构造对比矩阵:用表示第i个因素对第j个因素的比较结果,则=1/。即A为成对比较矩阵,比较尺度如表5。尺度为2,4表示第i个因素与第j个因素的影响介于上述两个相邻等级之间。其次层A的各因素对目标层Z的影响两两比较结果如表6:即A的对比矩阵为:
表5
尺度
含义
1
第i个因素与第j个因素的影响相同
3
第i个因素与第j个因素的影响稍强
5
第i个因素与第j个因素的影响明强
表6
Z
A1
A2
A3
A1
1
5/3
5
A2
5/3
1
3
A3
1/5
1/3
1
(3)计算单排序权向量及检验全都性原则:,利用matlab编程求得其特征向量W=(,,)。
10
计算全都性指标:
又,=3所以
则A为全都阵。特征向量经归一化处理,得到权向量W=(,,)。
(4)人员配置满足度
经过分析可知:人员配置满足度与人员的多少人员数量,均衡度成反相关,与平均培训时间成正相关,故对人员配置满足度的评价为:
=w1*1/xi1+w2*xi2+w3*1/xi3;i=1,2,3
=
=(,,);
总筹上述的三个因素与表4,通过对各个方案人员配置满足度进行分析,我们给出了一下建议:
(1)对于岗位与人员配置方面,在工作员工数需求的高峰阶段,建议调整些工作的起始时间,使每一天的工作量趋于平衡。
(2)对于提高管理水平与运行效率方面,通过多途径增加员工的业务学习时间。
(3)对于依靠于设备操作导致的岗位所需人员数固定不变这一问题,考虑改良设备,使人员配置更具机敏性。
(4)各员工应相互协调安排工作量,使工作量趋于平衡。
(5)对于各大类中某些工作的相像程度较高,冗余程度较大,故可考虑精简冗余机构,使人数配置得到适当的削减。
(6)加强对员工的培训使他们把握更多的技能,能够胜任多种工作。
(1)模型对全部状况都进行了认真的考虑与计算,得到的结果精确度较高,不存在漏掉最优解的可能。
(2)所建立的模型适用性强,能够顺当解决全部问题的。
(3)由于建立矩阵时将一年分开成每天进行考虑,导致模型繁琐,数据众多,模型的计算量大。
(4)由于假设每月30天且一月一日为星期一,导致模型结果精确 度不够,要解决实际问题还要带入真实日历。