1 / 23
文档名称:

制造β-羟基羧酸衍生物的方法.docx

格式:docx   大小:29KB   页数:23页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

制造β-羟基羧酸衍生物的方法.docx

上传人:开心果 2023/3/11 文件大小:29 KB

下载得到文件列表

制造β-羟基羧酸衍生物的方法.docx

相关文档

文档介绍

文档介绍:该【制造β-羟基羧酸衍生物的方法 】是由【开心果】上传分享,文档一共【23】页,该文档可以免费在线阅读,需要了解更多关于【制造β-羟基羧酸衍生物的方法 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。制造β-羟基羧酸衍生物的方法
专利名称:制造β-羟基羧酸衍生物的方法
技术领域:
本发明涉及β-羟基羧酸衍生物的制备。
背景羟基羧酸(HCA)是一类特别有趣和有用的化合物。它们自身是双官能的,因此能发生多种化学变化。羟基和羧酸基这两种官能团在一定的条件下,能彼此独立地发生反应,因此每种基团都能产生经典的衍生物,而且在其它情况下还可能互相作用影响它们正常的化学反应性。另一个使人感兴趣的是,两种官能团之间发生导致生成二聚,低聚,和重要的是聚合物质的反应的可能性。对于β-羟基羧酸(β-HCA)而言,还可能通过失去羟基和相邻的氢原子而发生脱水反应。这种脱水反应会导致形成α,β-不饱和羧酸,其本身也是一类重要的化合物。
两种常见和商业重要的α,β-不饱和羧酸是丙烯酸酯和***丙烯酸酯系。丙烯酸,丙烯酸盐和丙烯酸酯用于制造聚丙烯酸,聚丙烯酸盐和聚丙烯酸酯。这些物质可以用作表面涂料,粘合剂和密封剂,吸收剂,纺织品和非织造品,以及塑料改性剂。
概述本发明公开了制备β-HCA及其盐的方法。这些衍生物包括酯(特别是通过酸与C1-C7的醇反应制得的“轻质”酯),α,β-不饱和羧酸和酯(比如,丙烯酸和丙烯酸酯),和通过
β-HCA与醇的反应制得的烷氧基衍生物。然后可以进一步处理这些衍生物。比如,可以对β-HCA酯进行氢化形成多元醇。
可以从生物发酵培养基制得β-HCA。术语“醇”包括单官能醇(即,具有一个羟基的醇)和多官能醇(即,具有两个或多个羟基的醇)。
以下详细说明一个或多个本发明实例。通过详细说明和权利要求书,本发明的其他特征,目的和优点是显而易见的。
实施方式的详细说明本发明公开了制造β-HCA衍生物的方法,这些衍生物包括,比如,β-HCA的酯,丙烯酸,丙烯酸盐,丙烯酸酯,和烷氧基衍生物。可用于制备这些衍生物的β-HCA包括,比如,3-羟基丙酸,3-羟基-2-***丙酸,3-羟基丁酸,3-羟基-2-***丁酸,3-羟基-2-***戊酸,3-羟基-3-***丁酸,2,3-二***-3-羟基丁酸,3-羟基-3-苯基丙酸,及其组合。这些β-HCA及其盐可以从多种来源获得。β-HCA及其盐的用来源包括发酵和酶催工艺。生成酸的发酵反应通常包括在微生物的存在下发酵糖,如2001年4月20日提交的美国专利申请60/285478中所述。然后从发酵培养基中分离β-HCA和/或其盐。这可以通过各种技术完成,包括,比如一种萃取盐-分离方法,如PCT申请US02/14315(公布号WO02/090312)中所述,其名称是“制备羧酸及其衍生物的方法”。该专利申请中所述制备羟基官能羧酸的方法可以使用氨或***来中和酸,从而形成酸的铵盐。然后加入有机萃取剂并加热混合物,分离铵盐并将酸分配入有机溶剂中,可从发酵培养基中分离羧酸的铵盐。因此,制得的有机组合物中除了其他物质之外,还包括酸和有机萃取剂。可以从剩余的水性发酵培养基中分离酸
-有机萃取剂混合物,并进行反萃取,从酸中分离萃取剂从而制得纯(即游离的)酸。
以下讨论特定衍生物的制备方法。
β-HCA酯可以用本发明的某些方法在相对温和的条件下制备β-HCA的羧酸酯或其盐。使β-HCA或其盐与醇反应,促进酯化反应,可以在酯化催化剂存在下,除醇之外无其它溶剂的条件下就完成酯化反应。或者,可以通过将β-HCA或其盐与具有1到7个碳原子的轻质醇在与水不混溶的萃取剂和任选的酯化催化剂存在下反应制备羧酸酯。当这种β-HCA是从发酵培养基使用有机萃取剂通过萃取盐分离方法而制备时,这种技术是特别有用的。在酯化催化剂存在下,使β-HCA与醇在萃取剂中发生反应,能生成包括酯和萃取剂的混合物。
萃取剂实例包括酰***,醚,***,含磷酯(比如,磷酸三丁酯),氧化膦,硫化膦,和烷基硫。这些萃取剂可以单独使用或者组合使用。
反应是在有利于酯化而不利于脱水的条件下进行的。当反应是在基本无水的条件下,在大气
压力和低于回流温度的温度下发生时,就能进行酯化形成酯。优选反应是在室温下进行的。
可用于制备酯的醇能与水混溶或部分混溶。适用醇包括,比如,C1到C26的醇,包括直链,支链和环状有机部分。这些部分可以是脂肪族的,芳香族的或其组合。从甲醇到庚醇的轻质醇或伯醇(比如,含有1到7个碳原子的醇)是特别有用的。这些醇可以是直链或支链的并且可以是伯醇,仲醇或叔醇。另外,这些醇可以是单官能团的(即,含有单个羟基)或多官能团的(即,含有两个或多个羟基)。多官能团醇的实例包括二元醇和多元醇,比如甘油,1,2-乙二醇(乙二醇),1,3-丙二醇,1,4-丁二醇,1,2-丙二醇,及其聚氧乙烯(PEO或PEG)衍生物。
在向含有β-HCA的水性组合物中添加醇之后,可以进行蒸馏步骤。这可通过蒸馏出含水馏出液,直至剩余的β-HCA/醇混合物基本上是干的来进行。在一种技术中,可以用甲苯等有机溶剂进行共沸蒸馏。任选地用于β-HCA酯化的醇也可被用于蒸馏步骤中。
达到基本无水的条件之后,可以加入酯化催化剂引发酯化反应。适用于该过程的酯化催化剂包括酸性树脂,酸性无机盐,和无机酸。有用的无机酸包括,比如硫酸或磷酸。还可以使用无水硫酸铜等无机盐。酸性树脂催化剂的实例包括如酸性
AMBERLYST树脂(从Rohm和HaasCo.;Philadelphia,PA获得),NAFIONTM树脂(.;WilmingtonDE获得),和酸性DOWEXTM树脂(从DowChemicalCo.;Midland,MI获得)的市售化合物。可用酸性树脂的形式能使酸性树脂与β-HCA的蒸气或液体接触。比如,可以该树脂可以呈床或柱的形式。
可以通过蒸馏对要求的酯产品进行纯化。使用本发明的某些方法所获得酯的产率可以大于约80%。
α,β-不饱和羧酸及其盐β-HCA的脱水反应能生成α,β-不饱和羧酸产物。在一个方法实例中,可通过加热含有β-HCA盐的水溶液,使盐脱水,生成α,β-不饱和羧酸和/或其盐来制备α,β-不饱和羧酸和/或其盐。从发酵培养基或通过其他酶催工艺能制得这种水溶液。这个工艺的一个优点是,虽然β-HCA盐是水溶性的,但是α,β-不饱和羧酸的相应盐通常不是水溶性的。因此,α,β-不饱和羧酸盐从溶液中沉淀出来,从而有利于从原料中分离不饱和酸。
β-HCA盐可以是任何一种碱金属盐,碱土金属盐,或其组合。典型的盐包括,比如,钠盐和钙盐。因为β-HCA是可溶于水溶液中的,所以生成α,β-不饱和羧酸或其盐的脱水反应可以在水介质中发生。
任选地可在加热时向水溶液中加入脱水催化剂,来加强酸或酸的盐的脱水反应,形成α,β-不饱和羧酸或其盐。可以使用酸性或碱性物质来催化水介质中的脱水过程。脱水催化剂可以是有利于脱水反应的中性,酸性,或碱性物质。中性催化剂的实例包括,比如,磷酸钙,乳酸钙,和
3-羟基丙酸钙。其他可用催化剂包括氧化铝,氧化硅,氧化钛,氧化锆,沸石,和其他路易斯酸。***是可用作催化剂的碱性化合物。使用发酵培养基来形成β-HCA时,碱性***可便于起萃取剂作用,从水性发酵培养基中分离β-HCA,同时起脱水催化剂作用。适用于该过程的***实例包括三辛***(TCA),三癸***(TDA),和三(十二烷基)***(TDDA)。还可以使用其他外源碱来进行脱水反应。尤其是,能加强和帮助脱水反应的碱性物质是氧化钙和氢氧化钙等金属氧化物和氢氧化物。酸催化剂可以是气体或液体形式的盐酸,硫酸,或磷酸等无机强酸。还可以用酸性AMBERLYST树脂,NAFIONTM树脂,和酸性DOWEXTM树脂等不溶性酸性树脂作为催化剂。特别有用的酸催化剂是磷酸。
还可以通过蒸气转化(即气相反应)脱水反应制备α,β-不饱和羧酸。在这些方法中,可以在相对较高温度下蒸发含有β-HCA的水溶液,优选在脱水催化剂的存在下进行,将β-HCA转化成α,β-不饱和羧酸。
α,β-不饱和羧酸酯促进β-HCA酯化过程的工艺条件也能使用升高的温度和酸或碱催化来促进这些物质的脱水反应。类似地,使用升高的温度,和酸或碱催化,也能酯化α,β-
不饱和羧酸。因此,在一个方法实例中,α,β-不饱和羧酸的酯化和脱水过程都可以在同一个反应器中进行。
可用不同的反应路径来制备α,β-不饱和羧酸酯。在一个反应路径中,先通过与醇的反应将β-HCA或其铵盐酯化。然后进行酯的脱水反应,生成α,β-不饱和羧酸酯。在另一个反应路径中,先将β-HCA脱水,然后用醇将制得的α,β不饱和羧酸或其盐酯化,生成α,β-不饱和羧酸酯。
在水介质中,可以先将β-HCA或其盐转变成酯;然后蒸发含有酯和脱水催化剂的溶液,将β-HCA酯转化成α,β-不饱和羧酸酯来制备α,β-不饱和羧酸酯。
烷氧基衍生物在密闭反应器中加热含有β-HCA或其盐与醇的水溶液,能生成各种衍生物,包括,比如α,β-不饱和羧酸酯,α,β-不饱和羧酸,β-烷氧基羧酸或酯。制备酯时,宜向溶液中加入酯化催化剂。正如这里所述的其他工艺一样,β-HCA或其盐可以存在于例如由发酵培养基制得的水溶液中。
在Parr反应器等密闭反应器中,在碱性催化剂存在下,可以通过使含有β-HCA或其盐的水溶液与醇反应,制备β-HCA的烷氧基衍生物。可以加热溶液使之反应形成酸的烷氧基衍生物。碱性催化剂可以是Mg(OH)2,Ca(OH)2,NaOH中的任意一种,或者是其组合。
实施例除非另有说明,否则所有百分比都是重量百分比。
用高效液相色谱(HPLC)和气相色谱(GC)对以下反应的产物进行分析。
HPLC分析中所用的设备包括配备有Waters717+自动进样器的Waters1525二元HPLC泵,Waters2410折射率检测器和2487双入吸光度检测器。使用Bio-RadHP87-H柱。。,柱温是60℃。
GC分析中所用的设备包括J&WDB-WAXETR30米×32毫米,。初始炉温是90℃,以20℃/分的速度升温至200℃的最终温度。。注射温度是200℃。
实施例1本实施例说明了从3-HP通过树脂酸催化转化成各种烷基酯。3-HP是30%的水溶液。该物质中70%是纯的3-HP单体。
%的3-HP与甲醇通过共沸蒸馏而干燥。向干燥的3-HP中加入过量()的无水甲醇,-15。将混合物在室温下搅拌18小时并用GC监测。
,分别对应于3-HP的甲酯和3-HP的醚二聚体的二甲酯。反应中所用的3-HP仅是约70%纯度的单体,剩余部分是二聚体和痕量的丙烯酸。用GC-MS证实为3-HP甲酯。
反应结束后,过滤出固体催化剂,通过真空蒸馏除去溶剂。对粗产物进行闪式柱色谱操作,获得纯物质。在
GC上对酯作出校准曲线。
%的3-HP,,-15重复上述反应。将反应混合物在室温下搅拌21小时,并用GC监测。用上述实验的校准曲线确定产率。
时间产率*4小时70%21小时100%*基于70%纯度的3-%的3-HP,,-15重复上述反应,制备3-HP的乙酯。将反应混合物在室温下搅拌19小时并用GC监测。
时间产率*%19小时68%*基于70%纯度的3-HP重复上述反应,区别在于使用丁醇作为醇。19个小时之后,丁酯的产率是70%,基于70%纯度的3-HP原料。
重复上述反应,区别在于使用2-乙基己醇作为醇。19个小时之后,2-乙基己酯的产率是59%,基于70%纯度的3-HP原料。
重复上述反应,区别在于使用NAFIONNR-50而不是AMBERLYST-15作为催化剂。所用醇是乙醇。将混合物在室温下搅拌21个小时,并用GC监测。3-HP乙酯的产率是71%,基于70%纯度的3-HP原料。
实施例2本实施例说明了在室温下用H2SO4作为催化剂合成3-HP的甲酯。3-HP是30%的水溶液。该物质的70%是纯的3-HP单体。
用甲醇通过共沸蒸馏干燥30%的水性3-HP。向干燥的3-HP中加入过量甲醇和几滴浓H25O4。将混合物在室温下搅拌24小时,同时用GC监测。搅拌24个小时之后,大部分3-HP被转化成酯。
时间产率*%6小时92%24小时96%*基于70%纯度的3-HP实施例3本实施例说明了使用酸性树脂催化剂将3-HP转化成其甲酯。3-%的水溶液。%是纯的3-HP单体。
通过在旋转蒸发器上除去水分,%的水性3-HP()。向干燥的3-HP()-15酸性树脂催化剂。将混合物在室温下搅拌28小时并用GC监测。-15酸性树脂催化剂,将混合物继续搅拌18小时,制得3-HP的甲酯。
时间产率*2小时31%4小时42%20小时81%28小时95%46小时100%*%纯度的3-HP实施例4本实施例说明了使用H2SO4作为催化剂将3-HP转化成其甲酯。3-%的水溶液。%是纯的3-HP单体。
%的水性3-HP()。向干燥的3-HP()。将混合物在室温下搅拌22小时并用GC监测,制得3-HP的甲酯。