1 / 34
文档名称:

发光器件、电子设备、和其制造方法.docx

格式:docx   大小:40KB   页数:34页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

发光器件、电子设备、和其制造方法.docx

上传人:421989820 2023/3/20 文件大小:40 KB

下载得到文件列表

发光器件、电子设备、和其制造方法.docx

文档介绍

文档介绍:该【发光器件、电子设备、和其制造方法 】是由【421989820】上传分享,文档一共【34】页,该文档可以免费在线阅读,需要了解更多关于【发光器件、电子设备、和其制造方法 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。发光器件、电子设备、和其制造方法
专利名称:发光器件、电子设备、和其制造方法
技术领域:
本发明涉及一种OLED(有机发光器件)板,该板可由在衬底形成一个OLED及在衬底和覆盖部件之间密封该OLED而获得。本发明还涉及一种OLED模块,其中在OLED板上安装一个包括控制器等的IC。在本说明中,对于OLED板和OLED模块,‘发光器件’是通用术语。使用本发光器件的电子设备也包括在本发明中。
背景技术:
借助自发光,OLED消除了在液晶显示装置(LCDs)中必要的背光的需要,并且这样使其易于制作成更薄的装置。另外,自发光OLEDs具有高清晰度且在视角上没有限制。这些是近些年用OLEDs的发光器件作为显示装置以代替CRTs和LCDs正受到关注的原因。
OLED除了具有阳极层和阴极层之外,还具有一个包含有机化合物的层。当施加一个电场时,所述包含有机化合物的层发光(电致发光)。从有机化合物发出的冷光被分成从单态激发(荧光)回到基态的发光和从三态激发(磷光)回到基态的发光。根据本发明的发光器件能够使用一或两种类型的发光。
在本说明中,设在阳极和阴极之间的所有层一起作为有机发光层。尤其是,该有机发光层包括一个发光层,一个空穴注入层,一个电子注入层,一个空穴传输层等。
OLED的基本结构是以阳极层,发光层,和阴极层顺序排列的片层。这种基本结构能够改变成以阳极,空穴注入层,发光层,和阴极层顺序排列的片层,或者以阳极,空穴注入层,发光层,电子传输层和阴极层顺序排列的片层。
将利用OLED的发光器件投入实际使用的问题是由于热、光、潮湿、氧化、和其它原因引起的器件老化。
通常,生产具有OLED的发光器件时,OLED在导线线路和半导体元件在像素部分中形成之后而制成。一旦形成OLED,为了密封(包装)该OLED以使OLED不暴露在外界的空气中,就将其上设有OLED的第一衬底与第二衬底(由金属或者玻璃制成)粘合。用树脂等粘合两衬底,并且氮或者惰性气体填充到两个衬底之间的间隔中。但是,通过在包装袋中的最细微的裂缝,氧气容易到达如上述由两衬底和树脂密封的OLED。此外,不难发现湿气通过在粘合和密封中所用的树脂快速进入到OLED中。这是引起叫做暗斑的无光发射部分的原因,暗斑随着时间增加而加重且不发射光,这将成为问题。
发明内容本发明已解决了上述问题,并且本发明的一个目的是提供一种利用高可靠OLED的发光器件,本发明的另一目的是提供一种具有高可靠显示单元的电子设备,对于其显示单元使用了这种具有OLED的发光器件。
本发明涉及一种用于密封OLED的技术,该OLED设置在具有绝缘表面的衬底上。为了密封该
OLED,本发明用膜真空密封,该膜至少在一侧上(内侧)设置一层低气体透过率的薄膜(典型地,主要包含碳的薄膜,氧氮化硅膜,氮化硅膜,表示为ALNxOy的化合物膜,AlN膜或者这些膜组成的膜层)。
在本发明中,一个低气体透过率的膜用于提供一个膜,为了膜增加柔韧性而在反应气体中加入稀有气体元素。本发明的特征是一个低气体透过率的薄膜(典型地,主要包含碳的薄膜,氧氮化硅膜,氮化硅膜,表示为ALNxOy的化合物膜,ALN膜或者这些膜组成的膜层)包含稀有气体元素,以缓和膜中的内应力和使膜具有柔韧性,并且提供一个至少在一侧上(内侧)设置一薄膜的膜用于真空密封具有OLED的发光器件。
膜由于含有稀有气体而获得柔韧性。因此,用于提供包装膜的薄膜能防止在真空中热压合时产生裂纹和剥落。另外,该膜用作衬料能够改善包装膜的耐热性和机械强度。
在本说明中公开的本发明的结构是一个发光器件,其特征在于该器件包括一个TFT,一个其上形成有一个具有TFT的发光元件的有效矩阵衬底,一种干燥剂,和一个包装有效矩阵衬底的保护单元;和该保护单元是一个至少部分设有薄膜的膜,该薄膜包含稀有气体元素和主要包含碳。在本说明中,其上设有OLED的衬底叫做有效矩阵衬底。
在上述的结构中,发光元件有一个阳极,一个阴极,和一个夹在该阳极和阴极之间的EL材料。
在上述结构中,保护单元通过真空压合实现与有效矩阵衬底的接触。因此,保护单元具有一定程度的柔韧性。对于该保护单元可以使用任何膜,只要它有极好的气体隔离性和对可见光分别是透明或者半透明的。例如,保护单元可以是一个被一个薄膜完全覆盖的膜,该薄膜包含碳作为其主要成分,或者该膜在其一侧(内侧或者外侧)设置包含碳作为其主要成分的薄膜。
本发明的特征在于包含碳作为其主要成分的薄膜是一个厚度为3到50nm的DLC(如像碳的金刚石)膜。就短距离排列而言,DLC膜具有SP3键作为碳原子之间的键。宏观地,DLC膜具有非结晶质结构。DLC膜由70到95%的碳原子和5到30%的氢原子组成,它们使DLC膜非常硬并且具有极好的绝缘性。象这样的DLC膜还对蒸汽,氧气和其它气体具有低透过性的特征。如果用微硬度测试仪测量时DLC膜公知的硬度为15到25GPa。
DLC膜由等离子CVD,微波CVD,电子回旋共振(ECR)CVD,溅射等形成。这些方法的任一个可以产生的DLC膜是具有适当粘附力的DLC膜。DLC膜由作为阴极设置的衬底形成。如果施加一个负偏压并利用部分离子碰撞,可获得密而硬的DLC膜。
在由等离子CVD形成DLC膜中所用的反应气体是基于碳氢化合物的气体,例如CH4,C2H2或者C6H6。反应气体由辉光放电电离,并且离子被加速以碰撞施加一个负的
自偏压的阴极。结果,可获得密而平的DLC膜。
本DLC膜的特征是对于可见光是透明或者半透明的绝缘膜。
在本说明中,对可见光透明意味着对可见光具有80到100%的透光度,而对可见光半透明意味着对可见光具有50到80%的透光度。
一氧氮化硅膜可用来代替上述的DLC膜。在这种情况下,保护单元是一个至少部分设有一氧氮化硅膜的膜。
一氮化硅膜可用来代替上述的DLC膜。在这种情况下,保护单元是一个至少部分设有一氮化硅膜的膜。
ALN膜可用来代替上述的DLC膜。在这种情况下,保护单元是一个至少部分设有一ALN膜的膜。
ALNxOy膜可用来代替上述的DLC膜。在这种情况下,保护单元是一个至少部分设有一ALNxOy膜的膜。
也可使用由DLC膜、氧氮化硅膜、氮化硅膜、ALN膜、ALNxOy膜结合形成的膜层。在这种情况下,保护单元是一个至少部分设有该膜层的膜。
优选地,氮化硅膜,ALN膜,或者ALNxOy膜由溅射形成并且在腔中注入稀有气体,以使所形成的膜包含稀有气体元素(典型地如Ar)%或者更高,更理想的是1到30原子%或者更高。
在上述结构中,干燥剂优选置于在真空中密封的有效矩阵衬底和保护单元之间,以防止发光器件的老化。适合的干燥剂为氧化钡,氧化钙,硅胶等。干燥剂在柔性印刷基片被粘合之前或者之后放置。另外,干燥剂可以置于柔性印刷基片的柔性膜中、且而后粘合柔性印刷基片。优选地,干燥剂置于保护单元真空压合的位置附近。
为获得上述结构的本发明的内容是一个制造发光器件的方法,其特征在于包括如下步骤在具有绝缘表面的衬底上形成发光元件;将柔性印刷基片粘合到衬底的边缘;和用一主要含有碳的薄膜覆盖的膜在真空中密封发光元件、和部分柔性印刷基片。
在上述结构中,形成发光元件的步骤可以在使衬底的厚度减薄的步骤之后进行。如果衬底是薄的,减薄步骤优选设在粘合柔性印刷基片到成型衬底边缘的步骤之后。
在上述结构中,本方法的特征是包括放置干燥剂的步骤,在真空密封步骤之前该干燥剂与柔性印刷基片接触。真空密封步骤是热压合。
在上述结构中,主要含有碳的薄膜是一个DLC膜,%或更高稀有的气体元素,优选是1到30原子%的稀有气体元素。
在上述结构中,稀有气体元素是从由He、Ne、Ar、Kr和Xe构成的组中选择的一种或者多种元素。
在附图中图1A到1C是制造发光器件过程的示意图2是制造发光器件过程的示意图;图3是用于形成DLC膜的装置(等离子CVD装置)的示意图;图4A到4B分别是OLED模块的顶视图和侧视图;图5A到5D是制造有效矩阵衬底过程的示意图;图6A到6C是制造有效矩阵衬底过程的示意图;图7A到7B是制造有效矩阵衬底过程的示意图;图8A到8H是电子设备实例的示意图;图9是使用溅射的膜形成装置的示意图;图10是ALNxOy(X<Y)膜透过率的图表;图11是ALN膜透过率的图表;图12是各种膜湿气渗透率的图表。
具体实施方式下面参照图1A到3说明具体实施方式
1和2。
首先,制备具有绝缘表面的衬底。在衬底上,设置一个发光元件,这里是OLED,和一个引出电极102。引出电极102使OLED与外部电源连接。如果来自发光元件的光通过衬底传导,所用具有绝缘表面的衬底是光透射衬底如玻璃,已结晶玻璃,或者塑料。如果来自发光元件的光不通过衬底传播,可用陶瓷衬底,半导体衬底,金属衬底等。
为了降低器件的重量,在衬底上采用刻蚀处理并使衬底减薄。一个其上形成有OLED的衬底101是这样获得的。刻蚀处理不是总是必须的。接着,柔性印刷基片(FPC)103与衬底101粘合,与引出电极102电连接(图1A)。
为防止由于氧化、潮湿等使OLED老化,在其上形成有OLED
的衬底101上设置干燥剂104。干燥剂104是一个吸湿材料(优选是氧化钙或者氧化钡),或者是一个能够吸附氧的材料。这里,干燥剂104只要位于与FPC103和衬底101的端面接触即可。这可防止在后面的真空压合步骤中保护单元在此处扩张和损坏。
可作为气体隔离的保护单元在真空中压合以密封OLED,并且另外防止由于氧化,潮湿等使OLED的老化。保护单元可以是任意膜,该膜对可见光是透明的或者半透明的,并且可以在真空中压合。图1B示出在真空压合前的保护单元。
这里所用的保护单元是一个包装膜105,该膜由一个含有稀有气体(Ar)的DLC膜106覆盖。由一个含有稀有气体Ar的DLC膜106覆盖的包装膜105真空包装其上形成有OLED的衬底101、干燥剂104和柔性印刷基片103的一部分。这里所示是一个除压合部分外覆盖有DLC膜的包装膜的一个例子。但是,包装膜可仅仅在一侧(内侧或者外侧)设置DLC膜。用于设置或者覆盖包装膜的膜不限于单层膜,也可以是多层膜。
含有稀有气体(Ar)的DLC膜106在膜形成装置中形成,如图3所示是用等离子CVD。腔301中被抽成真空,并且将作为气体原料的CH4气和Ar气的混合气、或者C2H6气和Ar气的混合气注入到腔中。然后,在包装膜305的表面形成DLC膜(含有Ar)306。包装膜由支撑件307固定在与RF电源304
连接的电极302和电极303之间。注意在部分包装膜305上不形成DLC膜306,就是接触支撑件307的部分。本发明利用不形成DLC膜的这部分进行真空压合。图1C所示是真空压合后的保护单元。这里所用的包装膜象一个袋子或者一个空盒子。另外,包装膜可以是彼此放置在顶面上的两片组成并在其四边压合。包装膜的优选材料是能够被粘合的材料也可以是热压合的柔性胶带。作为包装膜的所用材料是树脂材料(聚对苯二甲酸乙二醇酯(PET)、聚醚风(PES)、聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、尼龙、聚醚醚***(PEEK)、聚风(PSF)、聚醚酰亚***(PEI)、聚芳酯(PAR)、聚对苯二甲酸丁二醇酯(PBT)等)。典型地,可使用热塑性的,PVF(聚***乙烯)膜、聚酯膜、或者丙烯酸树脂膜。在热压合后,压合部分可用粘合剂进一步密封,并且FPC可用粘合剂与保护单元粘合。
一旦OLED在衬底形成,上述步骤即被实施,希望尽可能避免OLED暴露到外界空气中。
这样,本发明能够提供用OLED的发光器件,通过控制由于潮湿,氧化等引起的老化增加了器件的可靠性。
参照图2描述发光器件的一个实例,该器件中用密封基板200密封OLED且而后进一步由保护单元密封。
在图2中,200是指密封基板,201、一个其上形成有OLED的衬底,202、引出电极,203、一FPC,204、一个干燥剂,205、包装膜,和
206、一含有Ar的DLC膜。尽管这里的膜206是一个含有Ar的DLC膜,该DLC膜可以由含有Ar的氧氮化硅膜、含有Ar的氮化硅膜、含有Ar的表示为ALNxOy、或者ALN的化合物膜所替代。
由于含有Ar,当用于包装膜和在真空中压合时,该膜可以是柔性的并且其可以防止产生裂纹或者脱落。
尽管在图中未示出,密封基板200用粘合剂与衬底201粘合,在密封基板200和衬底201之间的间隔中填充树脂、氮气、或者惰性气体。如果来自发光器件的光通过密封基板200传输,则所用密封基板是一个光透射基板如玻璃基板、已结晶的玻璃基板、或者塑料基板。如果来自发光器件的光不通过密封基板200传输,则可使用陶瓷基板、半导体基板、金属基板等。该密封基板200可以不总是板状,也可以类似一个盖。
这里干燥剂204置于衬底201上在FPC203和密封基板201之间,以防止在后面的真空压合步骤中保护单元在此处扩张和损坏。
通过下面的实施例将进一步描述如上所述本发明的结构。
图4A是制造OLED模块的顶部示意图,图4B是图4A模块的一个像素部分的示意图。
像素部分404布置在衬底401上,这样源线驱动电路402和栅线驱动电路403分别与像素部分的两侧平行运行。每个像素部分