1 / 19
文档名称:

气升式生物反应器高密度培育菲律宾蛤仔幼苗的方法.docx

格式:docx   大小:29KB   页数:19页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

气升式生物反应器高密度培育菲律宾蛤仔幼苗的方法.docx

上传人:421989820 2023/3/21 文件大小:29 KB

下载得到文件列表

气升式生物反应器高密度培育菲律宾蛤仔幼苗的方法.docx

文档介绍

文档介绍:该【气升式生物反应器高密度培育菲律宾蛤仔幼苗的方法 】是由【421989820】上传分享,文档一共【19】页,该文档可以免费在线阅读,需要了解更多关于【气升式生物反应器高密度培育菲律宾蛤仔幼苗的方法 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。气升式生物反应器高密度培育菲律宾蛤仔幼苗的方法
专利名称:气升式生物反应器高密度培育菲律宾蛤仔幼苗的方法
技术领域:
本发明属于生物工程范畴,具体涉及一种气升式生物反应器高密度培育菲律宾蛤仔幼苗的方法。
背景技术:
我国海产贝类养殖历史悠久,是世界上最早进行海水贝类养殖的国家。远在汉朝(公元前200年)就有关于养殖牡蛎的记载。除牡蛎外,从宋朝开始,我国沿海群众还开发滩涂养殖蛏、蚶、蛤仔。至本世纪的50年代,蛏、蚶、蛤、蛎成为我国的四大养殖贝类[1]。2001年我国海水养殖蛤类达到了年产量201万吨,成为仅次于牡蛎产量的第二大贝类养殖种类。帘蛤科贝类在滩涂中营埋栖生活,滤食水中的有机悬浮颗粒物质,因而不会造成养殖海区的海水污染,在海水养殖中占有重要地位,并被国家“十五”863计划列为重点研究开发的种类[2]。
菲律宾蛤仔(Ruditapesphlippinarum)隶属于软体动物门(Mollusca)、瓣鳃纲(Lamellibranchia)、异齿亚纲(Heterodonta)、帘蛤目(Veneroida)、帘蛤科(Veneridae)、蛤仔属(Ruditapes)。它俗称花蛤,营养丰富,味道鲜美,%,%,是人们非常喜食的埋栖型贝类,具有广阔的市场前景
[3-4]。
菲律宾蛤仔主要分布在菲律宾、日本和我国沿海,是我国的主要养殖贝类之一,具有巨大的养殖经济价值[5-6]。菲律宾蛤仔过去一直依赖自然种苗进行粗放式养殖,但随着生产规模的扩大,市场需求的增加,苗种短缺问题日益严重,尤其是菲律宾蛤仔在我国北方的养殖一般都要经过2~3年的时间,养殖周期长、产业风险大、经济效益难以稳定和提高。因此,利用人工方法进行工厂化蛤仔苗种生产成为弥补苗种资源短缺的最主要途径[3]。
在人工育苗过程中,从受精发育成D形幼虫直到附着变态之前,蛤仔营浮游生活,之后的培养则移到室外滩涂继续发育。因此,菲律宾蛤仔浮游幼虫的培育水平是关系到苗种生产量的重要因素之一[7]。
我国现行的贝类育苗技术和模式主要以大水体室内加温培育幼体,投附着基附苗,室外保苗等主要技术流程的育苗体系。该育苗模式幼体培育需要的水体大,一般10~50立方米一个育苗池,幼虫培育密度低(10~15个/ml左右)[7-8]。在建大量的育苗池的同时,还要建设大水体的配套预热池和储水池,由于育苗过程中基本采用大换水培育法,热能、饵料等流失严重,所以育苗场需要与育苗水体几乎相等的饵料培养水体和蒸汽锅炉等附属设备。这种方式的主要弊病为占地面积大、浪费能源和环境污染严重、理化因子难监控、生产状况不稳定
[9-12]。
封闭循环流水养殖技术在国外发达国家已普遍使用,在国内才刚刚起步,但发展势头迅猛,刘鹰等人[9]研究发现封闭循环流水培育苗种的成活率显著高于静水培育模式,生长速度较静水培育模式快。这是因为封闭循环流水能够保持水质稳定,受外界环境变化影响小,此方法适合对水质要求高的贝类工厂化育苗生产,但相关的生产工艺还需进一步完善。
发达国家如加拿大、澳大利亚、挪威、法国等国的育苗技术和设施比较先进,其特点是水体小、密度高、技术含量和自动化控制程度高,贝类育苗密度高于我国10~20倍左右,保苗率在40~60%左右,育苗场占地面积仅及我国同等规模的十分之一,其中上升流法(Up-welling)培育效果最好。由于不用蒸汽锅炉,环境污染非常轻。育苗厂可以根据市场需求,全年进行生产,育苗成功率高且稳定。我国正在参照国外的上升流育苗技术,研究开发高密度罐式育苗技术,目前已达到幼虫培育密度150~200个/ml的国际先进水平。
研究中发现,上述技术仍有很大的发展空间,生产潜力远没有完全发掘出来,如能在富氧、去氨氮、在线检测并及时调控理化因子,进而进行幼虫与有益菌混合培养,幼虫的培育密度还可几倍甚至十几倍的增加。研发一种高效、稳定、自动化程度高的生物反应器式贝类苗种培育系统是完全可能的。
发明内容
本发明的目的是研究一种气升式生物反应器高密度培育菲律宾蛤仔幼苗的方法。
本发明实施通过如下技术方案实施的研究一种气升式生物反应器高密度培育菲律宾蛤仔幼苗的方法,其特征是采用气升式生物反应器,培育菲律宾蛤仔幼苗;所述的气升式生物反应器,工艺参数的温度、pH、溶解氧和气压可在线检测的,反应器提升筒下部设置有气体分布器,容积100L生物反应器;所述的菲律宾蛤仔幼苗系软体动物门Mollusca、瓣鳃纲Lamellibranchia、异齿亚纲Heterodonta、帘蛤目Veneroida、帘蛤科Veneridae、蛤仔属Ruditapes的菲律宾蛤仔Ruditapesphilippinarum的幼苗。
上述的一种气升式生物反应器高密度培育菲律宾蛤仔幼苗的方法,其特征是所述的培育系指由D形幼虫期开始,经壳顶幼虫,至开始附着的过程;上述的一种气升式生物反应器高密度培育菲律宾蛤仔幼苗的方法,其特征是所述的培育方法如下(1)D形幼虫自反应器顶部一次性加入,培养过程中不出反应器,换水时,幼虫被截留在反应器中;(2),投喂量为1~2×105细胞数/ml;,投喂量为3~5×105细胞数/ml;将培养好的300~500万细胞数
/ml饵料放入饵料储备桶中,用恒流泵泵入反应器中,根据显微镜测定调整饵料流速;(3)反应器中设置溶解氧、温度、pH、氨氮检测探头,探头经传输线与微机相连,定时采集数据;(4)育苗过程中用符合标准的养殖用水,每天监测水质,测定溶解氧、氨氮、pH、COD;(5)培育完成后,由反应器底部的排水阀门将苗放出。
本发明的优点是
用贝类生物反应器进行菲律宾蛤仔的育苗,蛤仔幼虫的培育密度可以达到280~350个/mL,比传统土池育苗系统(10~15个/mL)提高20倍以上,比目前最好的高密度罐式培育系统(150个/mL)提高2倍。反应器能提供给蛤仔更充足的溶解氧,且溶解氧的变化较稳定,反应器式培育系统中的蛤仔生长速度较快。操作简单,控制入水流速、饵料添加速度、通气量即可。
本次试验探索了贝类苗种培育的新型模式,研发贝类育苗的新型技术和设施,整合集成了多项高新技术,建立具有我国自主知识产权的生物反应器式贝类苗种高密度培育技术体系。对提高我国贝类苗种培育技术与工艺水平、为下一步的育苗企业的技术改造进行必要的高技术储备很有意义。
图1是本发明的培育过程示意图;图2是菲律宾蛤仔不同育苗方式的幼虫密度对比图;图3是菲律宾蛤仔不同育苗方式的幼虫生长情况对比图。
具体实施例方式
图1中,1是亲贝繁殖;2是产卵、孵化;3是D形幼虫;4是气升式生物反应器;5是培育完成,放出幼苗;6是微机在线检测;7是饵料投放;8是微生物投放;9是养殖用水。
图2、3的说明见各该图中简要说明。
[4](一)菲律宾蛤仔的外形菲律宾蛤仔壳坚厚,呈卵圆形,两极膨胀,壳长与壳高的比例不一,一般壳高为壳长的2/3-4/5,壳宽约为壳高的3/4,壳顶稍突起。
(二)菲律宾蛤仔的摄食蛤仔的摄食方法是被动的,海水带来的饵料流经入水管,由于体内鳃纤毛的运动,产生进水流,食物随海水进入鳃腔。由于蛤仔的摄食方法是被动的,因而对饵料没有选择性,若非有特殊刺激性,只要颗粒大小适宜便可摄食。
(三)菲律宾蛤仔对水温的适应蛤仔为广温性贝类,在自然海区中,水温5~35℃生长正常,而以18~30℃生长最好,蛤仔适温上限为43℃,当温度上升到44℃时,其死亡率达50%,45℃时蛤仔全部死亡。水温下降到0℃,鳃纤毛停止运动,摄食停止。℃时鳃纤毛的运动最活跃。
(四)~,蛤仔生长较好。据报道,蛤仔对高比重的适应能力较大,海水比重在
,经长期试验中只有少数死亡,~,2日内无影响,8日后大部分死亡。
(五),到胚胎发育至浮游幼虫——即孵化后的担轮幼虫为止的阶段。此期以卵黄物质作为营养。影响这一时期发育的主要外界环境条件是水温。
,它包括担轮幼虫、面盘幼虫和匍匐幼虫三个不同阶段。
(1)担轮幼虫期体外生有纤毛轮,中央生有1根鞭毛束,它经常浮游于水表层,此期消化系统还未形成,仍以卵黄物质作为营养。影响此期发育的主要外界环境条件除了水温还有光线,光线可使幼虫大量密集。
(2)面盘幼虫具有面盘,面盘是其运动器官。
。此期由壳腺分泌的贝壳包裹了全身,形成两片侧面观象英语字母D字型的壳。面盘是它的主要运动器官。消化道形成,口位于面盘后方,食道紧贴于口的后方,成一狭管,内壁布满纤毛,胃包埋在消化盲囊中,卵黄耗尽,因此能够而且也需要从外界索取饵料进行营养。影响该期发育的主要外界环境条件有水温和饵料。
,绞合线开始向背部隆起,改变了原来的直线状态;壳顶幼虫后期,壳顶突出明显,足开始长出,呈棒状,尚欠伸缩活动能力。鳃开始出现,但尚有纤毛摆动,面盘仍很发达。足丝腺、足神经节和眼点逐渐形成,但此时足丝腺尚不具有分泌足丝的机能。
(3)匍匐幼虫该期幼虫较前一期大,一对黑褐色“眼点”显而易见,鳃增加至数对,足发达,能伸缩作匍匐运动,初期,面盘仍然存在,幼虫可借面盘时而游动,时而浮游,时而匍匐。本期面盘逐渐退化,至后期则只能匍匐生活,足丝腺开始具有分泌足丝的机能。
,便附着变态为稚贝。此时,外套膜分泌钙质的贝壳,并分泌足丝营附着生活。幼虫变态为稚贝时,它的外部形态,内部构造,生理机能和生态****性等方面,都要经过相当大的变化。变态标志之一,是形成含有钙质的成体壳,壳形改变。变态标志之二,是面盘萎缩退化,开始用鳃呼吸与取食。变态标志之三,是生态****性的改变,变态前,营浮游、匍匐生活;变态后,以足丝腺分泌足丝营附着生活。该期是幼虫向成体生活过渡的阶段。
,其它形态、器官和生活方式均已和成体一样。
。该期因埋栖在滩涂中,所以要求生活于有较深软泥的环境。
(AirlifiTowerLoopReactor,简记为ALR)是用于气液两相或气液固三相过程的接触反应装置。它是由鼓泡式生物反应器发展起来的,因此带有鼓泡的特点[13]。目前气升式生物反应器广泛应用于动植物细胞以及微藻的研究和生产[14-19]。它的主要原理是在反应器底部设置一个气体喷嘴,从外部通入的空气或氧气以气泡形式从下部上升,上升过程中达到气体交换的目的。同时它通过压缩空气膨胀提供能量,依靠含气泡液体与纯液体的密度差造成的升力使流体沿特定的流道循环流动,属于气力搅拌反应器。它具有下列突出优点(1)热质传递速率高;(2)供气效率高;(3)结构简单,内部无运动部件,这对许多反应体系都极具吸引力;(4)通气量高,在有气体循环的条件下,上升室中通气量可大于鼓泡反应器进气量;(5)流化效果极佳,可以使固体颗粒甚至较重的颗粒完全保持悬浮状态,这对许多气液固三相反应体系具有重要意义。近年来,内循环气升式反应器通过在环隙中增加旋流,使这一特性又得到大幅度提高。(6)能量耗散很均匀,与通气搅拌槽反应器形成鲜明的对照。这一优点对剪切力敏感物料(例如细胞增殖等反应过程)具有特别重要的意义[20]。气升式生物反应器利用气流上升使细胞悬浮起来,产生的剪切力相对较小。在该类生物反应器中,气体既为细胞生长提供足够的溶氧,又为细胞提供混合均匀的培养环境,其主要特点是流场分布均匀、气液传质性能好、结构简单、无机械搅拌
[2]-[24]。
本次试验使用的是气升式生物反应器,此生物反应器容量100L,为内循环式,由有机玻璃制作而成。操作参数(温度、pH、DO、气压)可在线监测,气体由置于提升筒下部的气体分布器鼓泡进入反应器。本次试验将探索贝类苗种培育的新型模式,研发贝类育苗的新型技术和设施,整合集成了多项高新技术,建立具有我国自主知识产权的生物反应器式贝类苗种高密度培育技术体系。此研究的开展对提高我国贝类苗种培育技术与工艺水平、为下一步的育苗企业的技术改造进行必要的高技术储备很有意义。
三、气升式生物反应器在菲律宾蛤仔育苗中的应用生物反应器是各种生物制品工业化大规模生产所必须的关键设备,满足各种生物反应工艺特殊要求的生物反应器的研制和放大是生化工程必须解决的问题之一。目前,生物反应器多用于培养植物细胞、动物细胞以及微藻等[4-9],以气升式生物反应器进行贝类的高密度育苗在国内外尚未见报道。而气升式生物反应器利用气流上升使细胞悬浮起来[10]的特性恰好能满足菲律宾蛤仔育苗的需要,在此反应器中,气体既能为蛤仔幼虫的生长提供足够的溶解氧,又能为蛤仔幼虫提供混合均匀的培养环境[11-12],使之生长发育和变态达到同步。本次试验发现确实如此。在试验中对三种培养方式的溶解氧均匀度和幼虫生长发育均匀度进行了分析,发现反应器中溶解氧最充足,且变化范围小,而高密度罐和土池中溶解氧的变化范围较大,说明与高密度罐和土池相比,反应器确实能为蛤仔幼虫提供更加均匀的培养环境,另外,反应器中幼虫的生长发育速度也比较接近,而高密度罐和土池中的幼虫生长发育不够整齐,在蛤仔幼虫的发育过程中,当幼虫开始附着变态时,生产中就开始在池底铺沙或者移至室外继续培养,因此,幼虫发育变态的整齐性对生产有积极意义