1 / 18
文档名称:

Adjustable Stiffness-Based Supination–Pronation Forearm Physical Rehabilitator 2022 Adrian Camacho-Ramirez.pdf

格式:pdf   大小:1,983KB   页数:18页
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

Adjustable Stiffness-Based Supination–Pronation Forearm Physical Rehabilitator 2022 Adrian Camacho-Ramirez.pdf

上传人:王夫人 2023/3/26 文件大小:1.94 MB

下载得到文件列表

Adjustable Stiffness-Based Supination–Pronation Forearm Physical Rehabilitator 2022 Adrian Camacho-Ramirez.pdf

相关文档

文档介绍

文档介绍:该【Adjustable Stiffness-Based Supination–Pronation Forearm Physical Rehabilitator 2022 Adrian Camacho-Ramirez 】是由【王夫人】上传分享,文档一共【18】页,该文档可以免费在线阅读,需要了解更多关于【Adjustable Stiffness-Based Supination–Pronation Forearm Physical Rehabilitator 2022 Adrian Camacho-Ramirez 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。:.
applied
sciences
Article
AdjustableStiffness-BasedSupination–PronationForearm
PhysicalRehabilitator
AdrianCamacho-Ramirez1,JuanCarlosÁvila-Vilchis1,*,BelemSaldivar2,-González1
andJuanManuelJacinto-Villegas1,3
1FacultyofEngineering,UniversidadAutonomadelEstadodeMéxico,Toluca50130,Mexico;
******@(.-R.);******@(.-G.);
******@(.-V.)
2DepartmentofAutomaticControl,CINVESTAV-IPN,écnicoNacional2508,
MexicoCity07360,Mexico;******@
3ProgramaInvestigadoraseInvestigadoresporMéxicodelCONACYT,,édito
Constructor,AlcaldíaBenitoJuárez,MexicoCity03940,Mexico
*Correspondence:******@
Abstract:Thispaperreportsanewmedicaldevicetogetherwithacontrolstrategythatfocusesonthe
followingtasks:(1)atrajectorytrackingproblemassociatedwiththesupination–pronationmotion
ofthewrist–forearmforpurposesofrehabilitationand(2)theadjustmentofthesystem’sstiffness
associatedwiththeappliedtorqueguaranteeingtheangularmotionoftherehabilitatoraswellas

ofmotion(ROM)ofthewrist–
,theperformanceofthe
closed-loopmedicaldeviceisvalidatedwithpreliminaryexperimentswithahealthysubjectbasedon
Citation:Camacho-Ramirez,A.;movementpatternsinvolvingpassive,assisted-resisted,andactivephasesofrehabilitationprotocols.
Ávila-Vilchis,.;Saldivar,B.;
Vilchis-González,.;Keywords:adjustablestiffness;tensioncontrol;rehabilitationdevice
Jacinto-Villegas,
Stiffness-BasedSupination-Pronation
.
,12,://
,accordingtotheMexicanInstitutoNacionaldeEstadísticayGeografía(INEGI),
AcademicEditors:(over5yearsold)withdisabilitiesdifflcultiesincarrying
LoredanaZolloouttheiractivitiesofdailyliving(ADL);ofthistotal,thepercentageofpeoplewhoare
%[1].Themaincausesofdisabilityarereported
Received:4April2022in[2]:diseases,injuries,
Accepted:13June2022tofullyorpartiallymovetheupperlimb,patientlimitationtoperformbasicADLcauses
Published:17June2022areductioninher/hisqualityoflife.
Publisher’sNote:MDPIstaysneutralInordertotreatupperlimbdysfunctions,severalapproachescanbeconsidered
withregardtojurisdictionalclaimsinbyphysicaltherapists.“Neurodevelopmentaltreatment(NDT)techniques,bilateralarm
publishedmapsandinstitutionalaffll-training,robot-assistedtraining,constraint-inducedmovementtherapy,andneuromuscular
”[3]
improvethenaturalfunctionthatcontrolsmotioninpatientswithneurologicalproblems[4].
Thesimultaneoususeofbothupperextremitiestoreproducethesameexercisesand
characterizesthebilateralarmtrainingapproachwhilemedicaldevicesidentifledasrobotic
Copyright:©2022bytheauthors.
systemsdeflnetherobot-assistedtrainingapproach,wherethiskindofsystemscanbe
LicenseeMDPI,Basel,Switzerland.
usedinpassive,active,andstrengthincreaserehabilitationstages[5].Restrainingthe
Thisarticleisanopenaccessarticle
distributedunderthetermsandhealthyupperlimb,largeenergytrainingwiththepareticextremity,andconductualuse
conditionsoftheCreativeCommonsofthepareticlimboutsidetheclinicalenvironmentareelementsthatcharacterizethe
Attribution(CCBY)license(https://constraint-,
[5].
/).
,12,:///app12126164:.
,12,61642of18
Othertechniquestotreataffectedupperlimbscanbeidentifledasunilateralorbilateral
,while,inthe
bilateralone,bothlimbsperformphysicalexercises[6].Brainorspinalcordtrauma,
strokes,andmultiplesclerosisaresomeoftheproblemsthatcanbetreatedwiththerapeutic
,specialistscouldrecommendwell-knowncommonexercises
asstretching,resistanceexercisesorworkingwithweights,dependingonthepatient’s
medicalcondition.
Usually,rehabilitationprotocolsrequirethesupervisionofatherapisttohelpthe
,theshortageoftherapists,thelim-
itedcoverageofhealthsystems,andtheabsenceoftrainedservicesrestrictthepatient’s
completerehabilitation[7].Thisscenariosuggeststhattheintroductionofrobotsorau-
tomaticdevicesmightsigniflcantlycontributetoimprovingtheresultsofrehabilitation
programs[8].Differentstudies[9–12]haveshownthatrehabilitationrobotsareidealtools
tocomplementclassicalphysicaltherapyduetostandardization,repeatability,intensive
training,andcostreduction,whichcansigniflcantlyimprovemotorskills.
Motorlearningandmotorcontrolimprovewhenpatientspracticefunctionaltasks
withstimulation,suchasreachingobjectsorplayinggames,whichcanimprovemuscular
strength,movementcoordination,andpreventsecondarycomplicationssuchasmuscle
atrophy,osteoporosis,orspasticity[13,14].Rehabilitationbasedonvirtualrealityhave
demonstrateadvantagesofusingthesetechnologiesinmotivatingpatientstoperform
exercisesinamoredynamicandinteractivemanner[15].Patientactiveparticipationis
,impedance-admittance
controltechniquesandpatient-cooperativemethodshavebeenproposedtoadaptrobotic
assistanceaccordingtothedisabilitylevelandvoluntaryparticipationofhumansub-
jects[16].Robot-assistedtherapyproposedin[17]enableshighlyrepetitive,intensive,
andquantiflablephysicaltraining,withthepurposeofrestoringalossofmotorfunctionin
patientswithneuromuscularconditions.
Tothebestoftheauthors’knowledge,thereisadeflcitinrehabilitationrobotsthatare
compactenough,light,-
over,therecommendationfornewdevelopmentsconcerningmedicaldevices,providedby
thesustainabledevelopmentagendaoftheUnitedNations,establishesthatthesesystems
mustbelightweightandaccessible[18].
Systemswithelasticjointshavegainedinterestintherehabilitationroboticscommu-

stiffnessrobotspromisetobebeneflcialregardingrobustnessandtaskadaptability[19,20],
andtheyaredevelopedtobepassivelycompliant,robust,
similarcharacteristicsarementionedbelow.
Tensegritysystemsareself-stressedsystemsdeflnedasasetofcompressedbarsinaset
oftensionedelementsthatcanbeeitherrigidorelasticcables[21].Duetotheirlightness,
compliance,flexibility,andarchitecture,tensegrityrobotsdemonstratestructuralproperties
thatprovidethemwithattributessimilartotheirbiologicalcounterparts,whichmake
themidealforrehabilitation[22].In[23],awearableandcompliantrobotisdesignedto
harmonizewiththehumanbody’supperlimbwhereanetworkoftensionedlines(cables)
connectedwithmotorsprovidesaugmentativeandcomplianceforcestoperformnatural
armmovements.
Cable-drivensystemshavedesirablefeatures,includingalargeworkspace,easy
implementation,lightness,reconflguration,andhigh-speedmovement[24].In[25],acable-
drivenarticulatedsystemwasdesignedtoassistrepetitivegaittrainingbychangingcable
(geometricalform),producing
[26],controlschemesthatdealwithbothreconflg-
urationandadjustablestiffnessinthecable-drivenandtensegritysystemsaredifflcult
toobtain.
Thepurposeofthecurrentstudyistodevelopandcontrolasupination–pronation
devicethatisabletorecreatetherapyexerciseswithorwithoutinterventionofaphysical:.
,12,61643of18
–forearmsupination–pronationROMisshowninFigure1,which
,dependingonthe
medicalconditionofeachpatient,theangulardisplacementsprovidedbythesystemcan
begeneratedwithsmallervaluesthanthoseillustratedinFigure1.
0°
-90°90°
SupinationPronation
–pronationoftheentireROM.
Sincemostrehabilitationexercisesresultinrepetitivemovements,thesecanbeper-
formedbyanappropriaterehabilitationdevice,butonlyafewrehabilitationdevicesare
capabletoperformthethreephasesofrehabilitation[27].Oneofthemainobjectivesin
rehabilitationsystemsistoallowflexibilityinmovements,forces,andacustomizedtraining
,accordingtodifferentrehabilitationphases,systemreconflgurationcanbe
achievedbyusingcableswhilespringsorflexibleelementsallowadjustingthestiffnessof
thesystem.
Upperlimbdevicescanbedividedintoprosthesisandorthosis:“Aprosthesisis
anartiflcialdevicethatisusedtoreplaceoraugmentamissingorimpairedpartofthe
,align,prevent,
orcorrectdeformitiesortoimprovethefunctionofmovablepartsofthebody”[28].
Orthosiscanfurtherbedividedinextensionmodulesofthetask-spacearmandexoskeleton
rehabilitationdevices.
Somerehabilitationdevicesfocusingonthewristandforearmjointsarebrieflyde-

inordertorecreatedifferentrehabilitationphases.
–forearmrehabilitationdevices.
Supination–Pronation
DeviceTorque(Nm)ROMCharacteristics
Activeandpassivedeviceconflguredtoassistarmjoints
MITMANUS1998[29],movementandhandgraspingtrainingthroughagraphic
°
2005[30]modulethatprovidesaseriesofvideogamesthatthepatient
mustcomplete.
Performswristbend,adduction,extension,andarmstretch-
MAHIExoII2011[31]°
elbowbendandstretching.
Alightweightandcompactwristandforearmrehabilitator
SUE2011[32]°
withpneumaticactuatorsandforcecompensationcontrol.
Practicaldeviceforclinicalimplementationwithtwobear-
WristGimbal2013[33]°ingsthatprovidemechanicalrobustnessandeasytousefor
thesupination–pronationROM.
Facilitatesrehabilitationoftheforearminsupination–
RiceWrist-S2014[34]°pronation,wristinflexion-extension,andradial-ulnarde-
:.
,12,61644of18
.
Supination–Pronation
DeviceTorque(Nm)ROMCharacteristics
Usesagraphicalinterfaceforpassiveandresistancetrain-
,throughtheirdeforma-
ULERD2014[35]°/75°
tions,theinteractionforcebetweenthehumanlimbandthe
roboticdevice.
Favorableperformancewithclosed-loopmovementswith
OpenWrist2017[36]°ergonomicfeaturesbutwithanincreasedinertiaandstatic
frictioninsupination–pronationROM.
Thestudyreportedinthispaperfocusesonthedevelopmentandcontrolofanoriginal
-
tormeetstheneedsofwrist–forearmsupination–pronationrehabilitationprotocolsthat
considerthetrackingofacyclictrajectoryandtheregulationofitsstiffness,representing
thetorquethatpotentialusersneedtoovercomeinordertoregainstrengthintheirmuscles.
(physicalaffectations)participatedwhen

consentdocumenttoparticipateintheexperimentaltestsorientedtoevaluatetheperformanceof
’medical

focusingonitsperformanceunderaclosed-loopcontrolconflgurationinordertotrackspeciflc
trajectoriesandadjustthesystem’sstiffness.
Rehabilitationdependsontheintensiveandcontinuou